

1. NAME OF THE MEDICINAL PRODUCT

Product Name: ROSUDEX 10 TABLETS (Rosuvastatin 10mg)

Composition:

Each film coated tablet contains:

Rosuvastatin Calcium

Equivalent to Rosuvastatin 10 mg

Pharmaceutical dosage form

Film coated tablets

2. Qualitative and quantitative composition

2. 1 Qualitative composition

S. No	Ingredients	Specification	Function			
1	Rosuvastatin calcium*	IH	Anti hyperlipidemic			
2	Microcrystalline Cellulose**	BP	Diluent			
3	Anhydrous Calcium Hydrogen Phosphate	BP	Diluent			
4	Lactose	BP	Disintegrant			
5	Croscarmellose Sodium	BP	Disintegrant			
6	Crospovidone	BP	Disintegrant			
LUBR	ICATION					
7	Purified Talc	BP	Lubricant			
8	Magnesium Stearate	BP	Lubricant			
COAT	COATING					
9	Insta coat sol	IH	Coating agent			
10	Brilliant Blue Lake	IH	Colorant			
11	Tartrazine yellow lake	IH	Colorant			
12	Isopropyl Alcohol	BP	Solvent			
13	Dichloromethane	BP	Solvent			

2. 2 Quantitative composition

Batch Size: 300000 Tablets

S. No	Ingredients	Label Claim (mg)	Over -ages (%)	Specifi -cation ¹	Qty per tablet (mg)	Qty per batch (kg)	Function
1	Rosuvastatin calcium*	10.00	2%	IH	12.260	3.378	Anti hyperlipidemic
2	Microcrystalline Cellulose**			BP	72.160	21.648	Diluent
3	Anhydrous Calcium Hydrogen Phosphate			BP	50.0	15.000	Diluent
4	Lactose			BP	123.580	37.074	Diluent
5	Croscarmellose Sodium			BP	12.000	3.600	Disintegrant
6	Crospovidone			BP	3.000	0.900	Disintegrant
LUBI	LUBRICATION						
7	Purified Talc			BP	5.000	1.500	Lubricant
8	Magnesium Stearate			BP	3.000	0.900	Lubricant
COA	COATING						
9	Insta coat sol (IC-S-10)			IH	9.790	2.937	Coating agent
10	Brilliant Blue Lake			IH	0.070	0.021	Colouring agent
11	Tartrazine yellow lake			IH	0.140	0.042	Colouring agent
12	Isopropyl Alcohol***			BP	52.000	15.600	Solvent
13	Dichloromethane ***			BP	115	34.500	Solvent

Abbreviation:

BP: British Pharmacopoeia

IH: In-House

3. Pharmaceutical form

Light green coloured circular slightly biconvexed film coated tablets and plain on both sides.

^{*} Rosuvastatin calcium Qty shall be dispensed bases on LOD and Assay.

^{**} Microcrystalline Cellulose shall be adjusted based on calculated Qty of Rosuvastatin Calcium

^{***} Isopropyl alcohol and dichloromethane will be evaporated during the manufacturing process

4. Clinical particulars

Therapeutic Indication Treatment of

hypercholesterolemia

Adults, adolescents and children aged 6 years or older with primary hypercholesterolaemia (type IIa including heterozygous familial hypercholesterolaemia) or mixed dyslipidaemia (type IIb) as an adjunct to diet when response to diet and other non-pharmacological treatments (e.g. exercise, weight reduction) is inadequate.

Homozygous familial hypercholesterolaemia as an adjunct to diet and other lipid lowering treatments (e.g. LDL apheresis) or if such treatments are not appropriate.

Prevention of Cardiovascular Events

Prevention of major cardiovascular events in patients who are estimated to have a high risk for a first cardiovascular event, as an adjunct to correction of other risk factors.

Posology and method of administration

Before treatment initiation the patient should be placed on a standard cholesterol-lowering diet that should continue during treatment. The dose should be individualised according to the goal of therapy and patient response, using current consensus guidelines.

Treatment of hypercholesterolaemia

The recommended start dose is 5 mg or 10 mg orally once daily in both statin naïve or patients switched from another HMG CoA reductase inhibitor. The choice of start dose should take into account the individual patient's cholesterol level and future cardiovascular risk as well as the potential risk for adverse reactions. A dose adjustment to the next dose level can be made after 4 weeks, if necessary.

In light of the increased reporting rate of adverse reactions with the 40 mg dose compared to lower doses, a final titration to the maximum dose of 40 mg should only be considered in patients with severe hypercholesterolaemia at high cardiovascular risk (in particular those with familial hypercholesterolaemia), who do not achieve their treatment goal on 20 mg, and in whom routine follow-up will be performed.

Specialist supervision is recommended when the 40 mg dose is initiated.

Prevention of cardiovascular events

In the cardiovascular events risk reduction study, the dose used was 20 mg daily.

Paediatric population

Paediatric use should only be carried out by specialists.

Children and adolescents 6 to 17 years of age (Tanner Stage < II-V)

In children and adolescents with heterozygous familial hypercholesterolaemia the usual start dose is 5 mg daily.

- In children 6 to 9 years of age with heterozygous familial hypercholesterolaemia, the usual dose range is 5-10 mg orally once daily. Safety and efficacy of doses greater than 10 mg have not been studied in this population.
- In children 10 to 17 years of age with heterozygous familial hypercholesterolaemia, the usual dose range is 5-20 mg orally once daily. Safety and efficacy of doses greater than 20 mg have not been studied in this population.

Titration should be conducted according to the individual response and tolerability in paediatric patients, as recommended by the paediatric treatment recommendations. Children and adolescents should be placed on standard cholesterol-lowering diet before rosuvastatin treatment initiation; this diet should be continued during rosuvastatin treatment.

Experience in children with homozygous familial hypercholesterolaemia is limited to a small number of children aged between 8 and 17 years.

The 40 mg tablet is not suitable for use in paediatric patients.

Children younger than 6 years

The safety and efficacy of use in children younger than 6 years has not been studied. Therefore, Rosuvastatin is not recommended for use in children younger than 6 years.

Older people

A start dose of 5 mg is recommended in patients >70 year. No other dose adjustment is necessary in relation to age.

Patients with renal impairment

No dose adjustment is necessary in patients with mild to moderate renal impairment. The recommended start dose is 5 mg in patients with moderate renal impairment (creatinine clearance of <60 ml/min). The 40 mg dose is contraindicated in patients with moderate renal impairment. The use of Rosuvastatin in patients with severe renal impairment is contraindicated for all doses.

Patients with hepatic impairment

There was no increase in systemic exposure to Rosuvastatin in subjects with Child-Pugh scores of 7 or below. However, increased systemic exposure has been observed in subjects with Child-Pugh scores of 8 and 9.In these patients an assessment of renal function should be considered. There is no experience in subjects with Child-Pugh scores above 9. Rosuvastatin is contraindicated in patients with active liver disease).

Race

Increased systemic exposure has been seen in Asian subjects. The recommended start dose is 5 mg for patients of Asian ancestry. The 40 mg dose is contraindicated in these patients.

Genetic polymorphisms

Specific types of genetic polymorphisms are known that can lead to increased Rosuvastatin exposure. For patients who are known to have such specific types of polymorphisms, a lower daily dose of Rosuvastatin is recommended.

Patients with pre-disposing factors to myopathy

The recommended start dose is 5 mg in patients with predisposing factors to myopathy.

The 40 mg dose is contraindicated in some of these patients.

Concomitant therapy

Rosuvastatin is a substrate of various transporter proteins (e.g. OATP1B1 and BCRP). The risk of myopathy (including rhabdomyolysis) is increased when rosuvastatin is administered concomitantly with certain medicinal products that may increase the plasma concentration of rosuvastatin due to interactions with these transporter proteins (e.g. ciclosporin and certain protease inhibitors including combinations of ritonavir with atazanavir, lopinavir, and/or tipranavir;Whenever possible, alternative medications should be considered, and, if necessary, consider temporarily discontinuing rosuvastatin therapy. In situations where co-administration of these medicinal products with rosuvastatin is unavoidable, the benefit and the risk of concurrent treatment and rosuvastatin dosing adjustments should be car.

Method of administration

Rosuvastatin may be given at any time of day, with or without food.

Contraindications

Rosuvastatin is contraindicated:

- in patients with hypersensitivity to the active substance or to any of the excipients.
- in patients with active liver disease including unexplained, persistent elevations of serum transaminases and any serum transaminase elevation exceeding 3 x the upper limit of normal (ULN).
- in patients with severe renal impairment (creatinine clearance <30 ml/min).
- in patients with myopathy.
- in patients receiving concomitant ciclosporin.
- during pregnancy and lactation and in women of childbearing potential not using appropriate contraceptive measures.

Special warnings and precautions for use

Renal Effects

Proteinuria, detected by dipstick testing and mostly tubular in origin, has been observed in patients treated with higher doses of Rosuvastatin, in particular 40 mg, where it was transient or intermittent in most cases. Proteinuria has not been shown to be predictive of acute or progressive renal disease. The reporting rate for serious renal events in post-marketing use is

higher at the 40 mg dose. An assessment of renal function should be considered during routine follow-up of patients treated with a dose of 40 mg.

Skeletal Muscle Effects

Effects on skeletal muscle e.g. myalgia, myopathy and, rarely, rhabdomyolysis have been reported in Rosuvastatin-treated patients with all doses and in particular with doses >20 mg. Very rare cases of rhabdomyolysis have been reported with the use of ezetimibe in combination with HMG-CoA reductase inhibitors. A pharmacodynamic interaction cannot be excluded and caution should be exercised with their combined use.

As with other HMG-CoA reductase inhibitors, the reporting rate for rhabdomyolysis associated with Rosuvastatin in post-marketing use is higher at the 40 mg dose.

Creatine Kinase Measurement

Creatine Kinase (CK) should not be measured following strenuous exercise or in the presence of a plausible alternative cause of CK increase which may confound interpretation of the result. If CK levels are significantly elevated at baseline (>5xULN) a confirmatory test should be carried out within 5-7 days. If the repeat test confirms a baseline CK>5xULN, treatment should not be started.

Before Treatment

Rosuvastatin, as with other HMG-CoA reductase inhibitors, should be prescribed with caution in patients with pre-disposing factors for myopathy/rhabdomyolysis. Such factors include:

- renal impairment
- hypothyroidism
- personal or family history of hereditary muscular disorders
- previous history of muscular toxicity with another HMG-CoA reductase inhibitor or fibrate
- · alcohol abuse
- age >70 years
- situations where an increase in plasma levels may occur
- concomitant use of fibrates.

In such patients the risk of treatment should be considered in relation to possible benefit and clinical monitoring is recommended. If CK levels are significantly elevated at baseline (>5xULN) treatment should not be started.

Whilst on Treatment

Patients should be asked to report inexplicable muscle pain, weakness or cramps immediately, particularly if associated with malaise or fever. CK levels should be measured in these patients. Therapy should be discontinued if CK levels are markedly elevated (>5xULN) or if muscular symptoms are severe and cause daily discomfort (even if CK levels are ≤5x ULN). If symptoms resolve and CK levels return to normal, then consideration should be given to reintroducing Rosuvastatin or an alternative HMG-CoA reductase inhibitor at the lowest dose with close monitoring. Routine monitoring of CK levels in asymptomatic patients is not warranted. There have been very rare reports of an immune-mediated necrotising myopathy

(IMNM) during or after treatment with statins, including rosuvastatin. IMNM is clinically characterized by proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment.

In clinical trials there was no evidence of increased skeletal muscle effects in the small number of patients dosed with Rosuvastatin and concomitant therapy. However, an increase in the incidence of myositis and myopathy has been seen in patients receiving other HMG-CoA reductase inhibitors together with fibric acid derivatives including gemfibrozil, ciclosporin, nicotinic acid, azole antifungals, protease inhibitors and macrolide antibiotics. Gemfibrozil increases the risk of myopathy when given concomitantly with some HMG-CoA reductase inhibitors. Therefore, the combination of Rosuvastatin and gemfibrozil is not recommended. The benefit of further alterations in lipid levels by the combined use of Rosuvastatin with fibrates or niacin should be carefully weighed against the potential risks of such combinations. The 40 mg dose is contraindicated with concomitant use of a fibrate.

Rosuvastatin should not be used in any patient with an acute, serious condition suggestive of myopathy or predisposing to the development of renal failure secondary to rhabdomyolysis (e.g. sepsis, hypotension, major surgery, trauma, severe metabolic, endocrine and electrolyte disorders; or uncontrolled seizures).

Fusidic acid

Rosuvastatin must not be co-administered with systemic formulations of fusidic acid or within 7 days of stopping fusidic acid treatment. In patients where the use of systemic fusidic acid is considered essential, statin treatment should be discontinued throughout the duration of fusidic acid treatment. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving fusidic acid and statins in combination. The patient should be advised to seek medical advice immediately if they experience any symptoms of muscle weakness, pain or tenderness.

Statin therapy may be re-introduced seven days after the last dose of fusidic acid.

In exceptional circumstances, where prolonged systemic fusidic acid is needed, e.g. for the treatment of severe infections, the need for co-administration of Rosuvastatin and fusidic acid should only be considered on a case by case basis and under close medical supervision.

Hepatic impairment

As with other HMG-CoA reductase inhibitors, Rosuvastatin should be used with caution in patients who consume excessive quantities of alcohol and/or have a history of liver disease.

It is recommended that liver function tests be carried out prior to, and 3 months following, the initiation of treatment. Rosuvastatin should be discontinued or the dose reduced if the level of serum transaminases is greater than 3 times the upper limit of normal. The reporting rate for serious hepatic events (consisting mainly of increased hepatic transaminases) in postmarketing use is higher at the 40 mg dose.

In patients with secondary hypercholesterolaemia caused by hypothyroidism or nephrotic syndrome, the underlying disease should be treated prior to initiating therapy with Rosuvastatin.

Race

Pharmacokinetic studies show an increase in exposure in Asian subjects compared with Caucasians.

Protease inhibitors

Increased systemic exposure to rosuvastatin has been observed in subjects receiving rosuvastatin concomitantly with various protease inhibitors in combination with ritonavir. Consideration should be given both to the benefit of lipid lowering by use of rosuvastatin in HIV patients receiving protease inhibitors and the potential for increased rosuvastatin plasma concentrations when initiating and up titrating rosuvastatin doses in patients treated with protease inhibitors. The concomitant use with protease inhibitors is not recommended unless the dose of rosuvastatin is adjusted.

Lactose intolerance

Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

<u>Interstitial lung disease</u>

Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy. Presenting features can include dyspnoea, non-productive cough and deterioration in general health (fatigue, weight loss and fever). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.

Diabetes Mellitus

Some evidence suggests that statins as a class raise blood glucose and in some patients, at high risk of future diabetes, may produce a level of hyperglycaemia where formal diabetes care is appropriate. This risk, however, is outweighed by the reduction in vascular risk with statins and therefore should not be a reason for stopping statin treatment. Patients at risk (fasting glucose 5.6 to 6.9 mmol/L, BMI>30kg/m2, raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.

In the JUPITER study, the reported overall frequency of diabetes mellitus was 2.8% in rosuvastatin and 2.3% in placebo, mostly in patients with fasting glucose 5.6 to 6.9 mmol/L.

Paediatric population

The evaluation of linear growth (height), weight, BMI (body mass index), and secondary characteristics of sexual maturation by Tanner staging in paediatric patients 6 to 17 years of age taking rosuvastatin is limited to a two-year period. After two years of study treatment, no effect on growth, weight, BMI or sexual maturation was detected.

In a clinical trial of children and adolescents receiving rosuvastatin for 52 weeks, CK elevations>10xULN and muscle symptoms following exercise or increased physical activity were observed more frequently compared to observations in clinical trials in adults.

Interaction with other medicinal products and other forms of interaction

Effect of co-administered medicinal products on rosuvastatin

Transporter protein inhibitors: Rosuvastatin is a substrate for certain transporter proteins including the hepatic uptake transporter OATP1B1 and efflux transporter BCRP. Concomitant administration of rosuvastatin with medicinal products that are inhibitors of these transporter proteins may result in increased rosuvastatin plasma concentrations and an increased risk of myopathy.

Ciclosporin: During concomitant treatment with Rosuvastatin and ciclosporin, rosuvastatin AUC values were on average 7 times higher than those observed in healthy volunteers. Rosuvastatin is contraindicated in patients receiving concomitant ciclosporin. Concomitant administration did not affect plasma concentrations of ciclosporin.

Protease inhibitors: Although the exact mechanism of interaction is unknown, concomitant protease inhibitor use may strongly increase rosuvastatin exposure (see Table 1). For instance, in a pharmacokinetic study, co-administration of 10 mg rosuvastatin and a combination product of two protease inhibitors (300 mg atazanavir / 100 mg ritonavir) in healthy volunteers was associated with an approximately three-fold and seven-fold increase in rosuvastatin steady-state AUC and C_{max} respectively. The concomitant use of rosuvastatin and some protease inhibitor combinations may be considered after careful consideration of rosuvastatin dose adjustments based on the expected increase in rosuvastatin exposure.

Gemfibrozil and other lipid-lowering products: Concomitant use of Rosuvastatin and gemfibrozil resulted in a 2-fold increase in rosuvastatin C_{max} and AUC.

Based on data from specific interaction studies no pharmacokinetic relevant interaction with fenofibrate is expected, however a pharmacodynamic interaction may occur. Gemfibrozil, fenofibrate, other fibrates and lipid lowering doses (> or equal to 1g/day) of niacin (nicotinic acid) increase the risk of myopathy when given concomitantly with HMG-CoA reductase inhibitors, probably because they can produce myopathy when given alone. The 40 mg dose is contraindicated with concomitant use of a fibrate. These patients should also start with the 5 mg dose.

Ezetimibe: Concomitant use of 10 mg rosuvastatin and 10 mg ezetimibe resulted in a 1.2-fold increase in AUC of rosuvastatin in hypercholesterolaemic subjects. However, a pharmacodynamic interaction, in terms of adverse effects, between Rosuvastatin and ezetimibe cannot be ruled out.

Antacid: The simultaneous dosing of Rosuvastatin with an antacid suspension containing aluminium and magnesium hydroxide resulted in a decrease in rosuvastatin plasma concentration of approximately 50%. This effect was mitigated when the antacid was dosed 2 hours after Rosuvastatin. The clinical relevance of this interaction has not been studied.

Erythromycin: Concomitant use of Rosuvastatin and erythromycin resulted in a 20% decrease in AUC and a 30% decrease in C_{max} of rosuvastatin. This interaction may be caused by the increase in gut motility caused by erythromycin.

Cytochrome P450 enzymes: Results from *in vitro* and *in vivo* studies show that rosuvastatin is neither an inhibitor nor an inducer of cytochrome P450 isoenzymes. In addition, rosuvastatin is a poor substrate for these isoenzymes. Therefore, drug interactions resulting from cytochrome P450-mediated metabolism are not expected. No clinically relevant

interactions have been observed between rosuvastatin and either fluconazole (an inhibitor of CYP2C9 and CYP3A4) or ketoconazole (an inhibitor of CYP2A6 and CYP3A4).

Interactions requiring rosuvastatin dose adjustments (see also Table 1): When it is necessary to co-administer rosuvastatin with other medicinal products known to increase exposure to rosuvastatin, doses of rosuvastatin should be adjusted. Start with a 5 mg once daily dose of rosuvastatin if the expected increase in exposure (AUC) is approximately 2-fold or higher. The maximum daily dose of rosuvastatin should be adjusted so that the expected rosuvastatin exposure would not likely exceed that of a 40 mg daily dose of rosuvastatin taken without interacting medicinal products, for example a 20 mg dose of rosuvastatin with gemfibrozil (1.9-fold increase), and a 10 mg dose of rosuvastatin with combination atazanavir/ritonavir (3.1-fold increase).

Table 1. Effect of co-administered medicinal products on rosuvastatin exposure (AUC; in order of decreasing magnitude) from published clinical trials

Interacting drug dose regimen	Rosuvastatin dose regimen	Change in rosuvastatin AUC*
Ciclosporin 75 mg BID to 200 mg BID, 6 months	10 mg OD, 10 days	7.1-fold ↑
Atazanavir 300 mg/ritonavir 100 mg OD, 8 days	10 mg, single dose	3.1-fold ↑
Simeprevir 150 mg OD, 7 days	10 mg, single dose	2.8-fold ↑
Lopinavir 400 mg/ritonavir 100 mg BID,	20 mg OD, 7 days	2.1-fold ↑
17 days Clopidogrel 300 mg loading, followed by 75 mg at 24 hours	20 mg, single dose	2-fold ↑
Gemfibrozil 600 mg BID, 7 days	80 mg, single dose	1.9-fold ↑
Eltrombopag 75 mg OD, 10 days	10 mg, single dose	1.6-fold ↑
Darunavir 600 mg/ritonavir 100 mg BID, 7 days	10 mg OD, 7 days	1.5-fold ↑
Tipranavir 500 mg/ritonavir 200 mg BID, 11 days	10 mg, single dose	1.4-fold ↑
Dronedarone 400 mg BID	Not available	1.4-fold ↑
Itraconazole 200 mg OD, 5 days	10 mg, single dose	1.4-fold ↑**
Ezetimibe 10 mg OD, 14 days	10 mg, OD, 14 days	1.2-fold ↑**
Fosamprenavir 700 mg/ritonavir 100 mg BID, 8 days	10 mg, single dose	\leftrightarrow
Aleglitazar 0.3 mg, 7 days	40 mg, 7 days	\leftrightarrow
Silymarin 140 mg TID, 5 days	10 mg, single dose	\leftrightarrow
Fenofibrate 67 mg TID, 7 days	10 mg, 7 days	\leftrightarrow
Rifampin 450 mg OD, 7 days	20 mg, single dose	\leftrightarrow
Ketoconazole 200 mg BID, 7 days	80 mg, single dose	\leftrightarrow
Fluconazole 200 mg OD, 11 days	80 mg, single dose	\leftrightarrow
Erythromycin 500 mg QID, 7 days	80 mg, single dose	20% ↓

Baicalin 50 mg TID, 14 days	20 mg, single dose	47% ↓

*Data given as x-fold change represent a simple ratio between co-administration and rosuvastatin alone. Data given as % change represent % difference relative to rosuvastatin alone.

Increase is indicated as "↑", no change as "↔", decrease as "↓".

**Several interaction studies have been performed at different rosuvastatin dosages, the table shows the most significant ratio

OD = once daily; BID = twice daily; TID = three times daily; QID = four times daily

Effect of rosuvastatin on co-administered medicinal products

Vitamin K antagonists: As with other HMG-CoA reductase inhibitors, the initiation of treatment or dosage up-titration of Rosuvastatin in patients treated concomitantly with vitamin K antagonists (e.g. warfarin or another coumarin anticoagulant) may result in an increase in International Normalised Ratio (INR). Discontinuation or down-titration of Rosuvastatin may result in a decrease in INR. In such situations, appropriate monitoring of INR is desirable.

Oral contraceptive/hormone replacement therapy (HRT): Concomitant use of Rosuvastatin and an oral contraceptive resulted in an increase in ethinyl estradiol and norgestrel AUC of 26% and 34%, respectively. These increased plasma levels should be considered when selecting oral contraceptive doses. There are no pharmacokinetic data available in subjects taking concomitant Rosuvastatin and HRT and therefore a similar effect cannot be excluded. However, the combination has been extensively used in women in clinical trials and was well tolerated.

Other medicinal products:

Digoxin: Based on data from specific interaction studies no clinically relevant interaction with digoxin is expected.

Fusidic Acid: The risk of myopathy including rhabdomyolysis may be increased by the concomitant administration of systemic fusidic acid with statins. The mechanism of this interaction (whether it is pharmacodynamic or pharmacokinetic, or both) it is yet unknown. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving this combination.

If treatment with systemic fusidic acid is necessary, Rosuvastatin treatment should be discontinued throughout the duration of the fusidic acid treatment.

Paediatric population: Interaction studies have only been performed in adults. The extent of interactions in the paediatric population is not known.

Pregnancy and lactation

Rosuvastatin is contraindicated in pregnancy and lactation.

Women of child bearing potential should use appropriate contraceptive measures.

Since cholesterol and other products of cholesterol biosynthesis are essential for the development of the foetus, the potential risk from inhibition of HMG-CoA reductase outweighs the advantage of treatment during pregnancy. Animal studies provide limited evidence of reproductive toxicity. If a patient becomes pregnant during use of this product, treatment should be discontinued immediately.

Rosuvastatin is excreted in the milk of rats. There are no data with respect to excretion in milk in humans.

Effects on ability to drive and use machines

Studies to determine the effect of Rosuvastatin on the ability to drive and use machines have not been conducted. However, based on its pharmacodynamic properties, Rosuvastatin is unlikely to affect this ability. When driving vehicles or operating machines, it should be taken

into account that dizziness may occur during treatment.

Undesirable effects

The most commonly reported adverse reactions during treatment are Diabetes mellitus and Headache, Dizziness, Constipation, Nausea, Abdominal pain, Myalgia, Asthenia.

Overdose

There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Liver

function and CK levels should be monitored. Haemodialysis is unlikely to be of benefit.

5. Pharmacological properties

Pharmacodynamic properties

Pharmacotherapeutic group: HMG-CoA reductase inhibitors

ATC code: C10A A07

Mechanism of action

Rosuvastatin is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate, a precursor for cholesterol. The primary site of action of rosuvastatin is the liver, the target organ for

cholesterol lowering.

Rosuvastatin increases the number of hepatic LDL receptors on the cell-surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles.

Pharmacodynamic effects

Rosuvastatin reduces elevated LDL-cholesterol, total cholesterol and triglycerides and increases HDL-cholesterol. It also lowers ApoB, nonHDL-C, VLDL-TG and increases ApoA-I (see Table 1). Rosuvastatin also lowers the LDL-C/HDL-C, total C/HDL-C and nonHDL-C/HDL-C and the ApoB/ApoA-I ratios.

Clinical efficacy and safety

Rosuvastatin is effective in adults with hypercholesterolaemia, with and without hypertriglyceridaemia, regardless of race, sex, or age and in special populations such as diabetics, or patients with familial hypercholesterolaemia.

From pooled phase III data, Rosuvastatin has been shown to be effective at treating the majority of patients with type IIa and IIb hypercholesterolaemia (mean baseline LDL-C about 4.8 mmol/l) to recognised European Atherosclerosis Society (EAS; 1998) guideline targets; about 80% of patients treated with 10 mg reached the EAS targets for LDL-C levels (<3 mmol/l).

In a large study, 435 patients with heterozygous familial hypercholesterolaemia were given Rosuvastatin from 20 mg to 80 mg in a force-titration design. All doses showed a beneficial effect on lipid parameters and treatment to target goals. Following titration to a daily dose of 40 mg (12 weeks of treatment), LDL-C was reduced by 53%. 33% of patients reached EAS guidelines for LDL-C levels (<3 mmol/l).

In a force-titration, open label trial, 42 patients with homozygous familial hypercholesterolaemia were evaluated for their response to Rosuvastatin 20 - 40 mg. In the overall population, the mean LDL-C reduction was 22%.

Paediatric population

In a double-blind, randomized, multi-centre, placebo-controlled, 12-week study (n=176, 97 male and 79 female) followed by a 40-week (n=173, 96 male and 77 female), open-label, rosuvastatin dose-titration phase, patients 10-17 years of age (Tanner stage II-V, females at least 1 year post-menarche) with heterozygous familial hypercholesterolaemia received rosuvastatin 5, 10 or 20 mg or placebo daily for 12 weeks and then all received rosuvastatin daily for 40 weeks. At study entry, approximately 30% of the patients were 10-13 years and approximately 17%, 18%, 40%, and 25% were Tanner stage II, III, IV, and V, respectively.

LDL-C was reduced 38.3%, 44.6%, and 50.0% by rosuvastatin 5, 10 and 20 mg, respectively, compared to 0.7% for placebo.

At the end of the 40-week, open-label, titration to goal, dosing up to a maximum of 20 mg once daily, 70 of 173 patients (40.5%) had achieved the LDL-C goal of less than 2.8 mmol/l.

After 52 weeks of study treatment, no effect on growth, weight, BMI or sexual maturation was detected. This trial (n=176) was not suited for comparison of rare adverse drug events.

Rosuvastatin was also studied in a 2-year open-label, titration-to-goal study in 198 children with heterozygous familial hypercholesterolaemia aged 6 to 17 years (88 male and 110 female, Tanner stage <II-V). The starting dose for all patients was 5 mg rosuvastatin once daily. Patients aged 6 to 9 years (n=64) could titrate to a maximum dose of 10 mg once daily and patients aged 10 to 17 years (n=134) to a maximum dose of 20 mg once daily.

After 24 months of treatment with rosuvastatin, the LS mean percent reduction from the baseline value in LDL-C was-43% (Baseline: 236 mg/dL, Month 24: 133 mg/dL). For each

age group, the LS mean percent reductions from baseline values in LDL-C were -43% (Baseline: 234 mg/dL, Month 24: 124 mg/dL), -45% (Baseline: 234 mg/dL, 124 mg/dL), and -35% (Baseline: 241 mg/dL, Month 24: 153 mg/dL) in the 6 to <10, 10 to <14, and 14 to <18 age groups, respectively.

Pharmacokinetic properties

Absorption: Maximum rosuvastatin plasma concentrations are achieved approximately 5 hours after oral administration. The absolute bioavailability is approximately 20%.

Distribution: Rosuvastatin is taken up extensively by the liver which is the primary site of cholesterol synthesis and LDL-C clearance. The volume of distribution of rosuvastatin is approximately 134 L. Approximately 90% of rosuvastatin is bound to plasma proteins, mainly to albumin.

Biotransformation: Rosuvastatin undergoes limited metabolism (approximately 10%). *In vitro* metabolism studies using human hepatocytes indicate that rosuvastatin is a poor substrate for cytochrome P450-based metabolism. CYP2C9 was the principal isoenzyme involved, with 2C19, 3A4 and 2D6 involved to a lesser extent. The main metabolites identified are the N-desmethyl and lactone metabolites. The N-desmethyl metabolite is approximately 50% less active than rosuvastatin whereas the lactone form is considered clinically inactive. Rosuvastatin accounts for greater than 90% of the circulating HMG-CoA reductase inhibitor activity.

Elimination: Approximately 90% of the rosuvastatin dose is excreted unchanged in the faeces (consisting of absorbed and non-absorbed active substance) and the remaining part is excreted in urine. Approximately 5% is excreted unchanged in urine.

The plasma elimination half-life is approximately 19 hours. The elimination half-life does not increase at higher doses. The geometric mean plasma clearance is approximately 50 litres/hour (coefficient of variation 21.7%). As with other HMG-CoA reductase inhibitors, the hepatic uptake of rosuvastatin involves the membrane transporter OATP-C. This transporter is important in the hepatic elimination of rosuvastatin.

Preclinical safety data

Preclinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, genotoxicity and carcinogenicity potential. Specific tests for effects on hERG have not been evaluated. Adverse reactions not observed in clinical studies, but seen in animals at exposure levels similar to clinical exposure levels were as follows: In repeated-dose toxicity studies histopathologic liver changes likely due to the pharmacologic action of rosuvastatin were observed in mouse, rat, and to a lesser extent with effects in the gall bladder in dogs, but not in monkeys. In addition, testicular toxicity was observed in monkeys and dogs at higher dosages. Reproductive toxicity was evident in rats, with reduced litter sizes, litter weight and pup survival observed at maternally toxic doses, where systemic exposures were several times above the therapeutic exposure level.

6. Pharmaceutical particulars

List of excipients

S. No	Name of Excipients
1	Microcrystalline Cellulose**
2	Anhydrous Calcium Hydrogen Phosphate
3	Lactose
4	Croscarmellose Sodium
5	Crospovidone
6	Purified Talc
7	Magnesium Stearate
8	Insta coat sol (IC-S-10)
9	Brilliant blue lake
10	Tartrazine yellow lake
11	Dichloromethane
12	Isopropyl alcohol

Incompatibilities

Not applicable.

Shelf life

24 Months

Special precautions for storage

Store below 30°C. Protect from light and moisture.

Nature and contents of container

a) Type of package

1 x 10"s Alu-Alu blister pack

b) Nature and packing for material

3x10"s Alu-Alu blisters packed in a carton.

Instructions for use handling for disposal

No special requirements.

- 7. Marketing Authorisation Holder Zolon Healthcare Limited
- 8. Number(s) in the National Register of Finished Pharmaceutical Products
- 9. Date of First Authorisation/Renewal of the Authorisation
- 10. Date of Revision of the text -Nil