SUMMARY OF PRODUCT CHARACTERISTICS (SmPC)

1. NAME OF MEDICINAL PRODUCT

Afragra®50 tablet

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 50mg sildenafil citrate

{For a full list of excipients, see section 6.1}

3. PHARMACEUTICAL FORM

A coated tetragonal blue tablet

4. CLINICAL PARTICULARS

4.1Therapeutic indications

Afragra®is indicated in the treatment of erectile dysfunction.

4.2 Posology and method of administration

Adult over 18 years initially 50mg approximately 1 hour before sexual activity, subsequent doses adjusted according to response to 25-100mg as a single dose as needed; maximum 1 dose in 24 hours (maximum single dose 100mg).

Method of Administration

Oral administration only

4.3 Contraindications

- Patients who are using organic nitrates, either regularly and/or intermittently, in any form as it is shown to potentiate the hypotensive effects of nitrates.
- Men for whom <u>sexual intercourse</u> is inadvisable due to cardiovascular risk factors
- Severe <u>hepatic impairment</u> (decreased liver function)
- Severe impairment in <u>renal function</u>
- <u>Hypotension</u> (low blood pressure)
- Recent stroke or heart attack
- Hereditary degenerative retinal disorders (including genetic disorders of retinal phosphodiesterases)
- hypersensitivity to any component of the tablet.

4.4 Special warnings and precaution for use

A medical history and physical examination should be undertaken to diagnose erectile dysfunction and determine potential underlying causes, before pharmacological treatment is considered.

Cardiovascular risk factors

Prior to initiating any treatment for erectile dysfunction, physicians should consider the cardiovascular status of their patients, since there is a degree of cardiac risk associated with sexual activity. Sildenafil has vasodilator properties, resulting in mild and transient decreases in blood pressure (see Section 5.1). Prior to prescribing sildenafil, physicians should carefully consider whether their patients with certain underlying conditions could be adversely affected by such vasodilatory effects, especially in combination with sexual activity. Patients with increased susceptibility to vasodilators include those with left ventricular outflow obstruction (e.g., aortic stenosis, hypertrophic obstructive cardiomyopathy), or those with the rare syndrome of multiple system atrophy manifesting as severely impaired autonomic control of blood pressure.

Sildenafil potentiates the hypotensive effect of nitrates

Serious cardiovascular events, including myocardial infarction, unstable angina, sudden cardiac death, ventricular arrhythmia, cerebrovascular haemorrhage, transient ischaemic attack, hypertension and hypotension have been reported post-marketing in temporal association with the use of Sildenafil. Most, but not all, of these patients had pre-existing cardiovascular risk factors. Many events were reported to occur during or shortly after sexual intercourse and a few were reported to occur shortly after the use of Sildenafil without sexual activity. It is not possible to determine whether these events are related directly to these factors or to other factors.

Priapism

Agents for the treatment of erectile dysfunction, including sildenafil, should be used with caution in patients with anatomical deformation of the penis (such as angulation, cavernosal fibrosis or Peyronie's disease), or in patients who have conditions which may predispose them to priapism (such as sickle cell anaemia, multiple myeloma or leukaemia).

Prolonged erections and priapism have been reported with sildenafil in postmarketing experience. In the event of an erection that persists for longer than 4 hours, the patient should seek immediate medical assistance. If priapism is not treated immediately, penile tissue damage and permanent loss of potency could result.

Concomitant use with other PDE5 inhibitors or other treatments for erectile dysfunction The safety and efficacy of combinations of sildenafil with other PDE5 inhibitors, or other pulmonary arterial hypertension (PAH) treatments containing sildenafil (REVATIO), or other treatments for erectile dysfunction have not been studied. Therefore the use of such combinations is not recommended.

Effects on vision

Cases of visual defects have been reported spontaneously in connection with the intake of sildenafil and other PDE5 inhibitors (see section 4.8). Cases of non-arteritic anterior ischaemic optic neuropathy, a rare condition, have been reported spontaneously and in an observational study in connection with the intake of sildenafil and other PDE5 inhibitors (see section 4.8). Patients should be advised that in the event of any sudden visual defect, they should stop taking sildenafil and consult a physician immediately

Concomitant use with ritonavir

Co-administration of sildenafil with ritonavir is not advised.

Concomitant use with alpha-blockers

Caution is advised when sildenafil is administered to patients taking an alphablocker, as the coadministration may lead to symptomatic hypotension in a few susceptible individuals (see Section 4.5). This is most likely to occur within 4 hours post sildenafil dosing. In order to minimise the potential for developing postural hypotension, patients should be hemodynamically stable on alpha-blocker therapy prior to initiating sildenafil treatment. Initiation of sildenafil at a dose of 25 mg should be considered (see Section 4.2). In addition, physicians should advise patients what to do in the event of postural hypotensive symptoms.

Effect on bleeding

Studies with human platelets indicate that sildenafil potentiates the antiaggregatory effect of sodium nitroprusside *in vitro*. There is no safety information on the administration of sildenafil to patients with bleeding disorders or active peptic ulceration. Therefore sildenafil should be administered to these patients only after careful benefit-risk assessment.

4.5 Interaction with other medicinal product and other forms of interaction.

Effects of other medicinal products on sildenafil

In vitro studies:

Sildenafil metabolism is principally mediated by the cytochrome P450 (CYP) isoforms 3A4 (major route) and 2C9 (minor route). Therefore, inhibitors of these isoenzymes may reduce sildenafil clearance and inducers of these isoenzymes may increase sildenafil clearance..

In vivo studies:

Population pharmacokinetic analysis of clinical trial data indicated a reduction in sildenafil clearance when co-administered with CYP3A4 inhibitors (such as ketoconazole, erythromycin, cimetidine). Although no increased incidence of adverse events was observed in these patients, when sildenafil is administered concomitantly with CYP3A4 inhibitors, a starting dose of 25mg should be considered.

Effects of sildenafil on other medicinal products

In vitro studies:

Sildenafil is a weak inhibitor of the cytochrome P450 isoforms 1A2, 2C9, 2C19, 2D6, 2E1 and 3A4 (IC50 >150 μ M). Given sildenafil peak plasma concentrations of approximately 1 μ M after recommended doses, it is unlikely that Sildenafil will alter the clearance of substrates of these isoenzymes.

There are no data on the interaction of sildenafil and non-specific phosphodiesterase inhibitors such as theophylline or dipyridamole.

In vivo studies:

Consistent with its known effects on the nitric oxide/cGMP pathway , sildenafil was shown to potentiate the hypotensive effects of nitrates, and its co-administration with nitric oxide donors or nitrates in any form is therefore contraindicated.

4.6 Pregnancy and Lactation

Sildenafil is not indicated for use by women.

There are no adequate and well-controlled studies in pregnant or breastfeeding women.

No relevant adverse effects were found in reproduction studies in rats and rabbits following oral administration of sildenafil.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed.

As dizziness and altered vision were reported in clinical trials with sildenafil, patients should be aware of how they react to Sildenafil, before driving or operating machinery.

4.8 Undesirable Effects

The most common side effects of sildenafil use included headache, flushing, dizziness, dyspepsia, nasal congestion and impaired vision, including photophobia and blurred vision.

4.9 Overdose

In single dose volunteer studies of doses up to 800mg, adverse reactions were similar to those seen at lower doses, but the incidence rates and severities were increased. Doses of 200mg did not result in increased efficacy but the incidence of adverse reactions (headache, flushing, dizziness, dyspepsia, nasal congestion, altered vision) was increased.

In cases of overdose, standard supportive measures should be adopted as required. Renal dialysis is not expected to accelerate clearance as sildenafil is highly bound to plasma proteins and not eliminated in the urine.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamics Properties

Pharmacotherapeutic group: Urologicals; Drugs used in erectile dysfunction. ATC Code: G04B E03.

Mechanism of action

Sildenafil is an oral therapy for erectile dysfunction. In the natural setting, i.e. with sexual stimulation, it restores impaired erectile function by increasing blood flow to the penis.

The physiological mechanism responsible for erection of the penis involves the release of nitric oxide (NO) in the corpus cavernosum during sexual stimulation. Nitric oxide then activates the enzyme guanylate cyclase, which results in increased levels of cyclic guanosine monophosphate (cGMP), producing smooth muscle relaxation in the corpus cavernosum and allowing inflow of blood.

Sildenafil is a potent and selective inhibitor of cGMP specific phosphodiesterase type 5 (PDE5) in the corpus cavernosum, where PDE5 is responsible for degradation of cGMP. Sildenafil has a peripheral site of action on erections. Sildenafil has no direct relaxant effect on isolated human corpus cavernosum but potently enhances the relaxant effect of NO on this tissue. When the NO/cGMP pathway is activated, as occurs with sexual stimulation, inhibition of PDE5 by sildenafil results in increased corpus cavernosum levels of cGMP. Therefore sexual stimulation is required in order for sildenafil to produce its intended beneficial pharmacological effects.

Pharmacodynamic effects

Studies *in vitro* have shown that sildenafil is selective for PDE5, which is involved in the erection process. Its effect is more potent on PDE5 than on other known phosphodiesterases. There is a 10-fold selectivity over PDE6 which is involved in the phototransduction pathway in the retina. At maximum recommended doses, there is an 80-fold selectivity over PDE1, and over 700-fold over PDE 2, 3, 4, 7, 8, 9, 10 and 11. In particular, sildenafil has greater than 4,000-fold selectivity for PDE5 over PDE3, the cAMP-specific phosphodiesterase isoform involved in the control of cardiac contractility.

Clinical efficacy and safety

Two clinical studies were specifically designed to assess the time window after dosing during which sildenafil could produce an erection in response to sexual stimulation. In a penile plethysmography (RigiScan) study of fasted patients, the median time to onset for those who obtained erections of 60% rigidity (sufficient for sexual intercourse) was 25 minutes (range 12-37 minutes) on sildenafil. In a separate RigiScan study, sildenafil was still able to produce an erection in response to sexual stimulation 4-5 hours post-dose.

Sildenafil causes mild and transient decreases in blood pressure which, in the majority of cases, do not translate into clinical effects. The mean maximum decreases in supine systolic blood pressure following 100mg oral dosing of sildenafil was 8.4 mmHg. The corresponding change in supine diastolic blood pressure was 5.5 mmHg. These decreases in blood pressure are consistent with the vasodilatory effects of sildenafil, probably due to increased cGMP levels in

vascular smooth muscle. Single oral doses of sildenafil up to 100mg in healthy volunteers produced no clinically relevant effects on ECG.

In a study of the hemodynamic effects of a single oral 100mg dose of sildenafil in 14 patients with severe coronary artery disease (CAD) (>70% stenosis of at least one coronary artery), the mean resting systolic and diastolic blood pressures decreased by 7% and 6% respectively compared to baseline. Mean pulmonary systolic blood pressure decreased by 9%. Sildenafil showed no effect on cardiac output, and did not impair blood flow through the stenosed coronary arteries.

A double-blind, placebo-controlled exercise stress trial evaluated 144 patients with erectile dysfunction and chronic stable angina who regularly received anti-anginal medicinal products (except nitrates). The results demonstrated no clinically relevant differences between sildenafil and placebo in time to limiting angina.

Mild and transient differences in colour discrimination (blue/green) were detected in some subjects using the Farnsworth-Munsell 100 hue test at 1 hour following a 100mg dose, with no effects evident after 2 hours post-dose. The postulated mechanism for this change in colour discrimination is related to inhibition of PDE6, which is involved in the phototransduction cascade of the retina. Sildenafil has no effect on visual acuity or contrast sensitivity. In a small size placebo-controlled study of patients with documented early age-related macular degeneration (n=9), sildenafil (single dose, 100mg) demonstrated no significant changes in visual tests conducted (visual acuity, Amsler grid, colour discrimination simulated traffic light, Humphrey perimeter and photostress).

There was no effect on sperm motility or morphology after single 100mg oral doses of sildenafil in healthy volunteers .

5.2 Pharmacokinetic properties

Absorption

Sildenafil is rapidly absorbed. Maximum observed plasma concentrations are reached within 30 to 120 minutes (median 60 minutes) of oral dosing in the fasted state. The mean absolute oral bioavailability is 41% (range 25-63%). After oral dosing of sildenafil AUC and Cmax increase in proportion with dose over the recommended dose range (25-100mg).

When sildenafil is taken with food, the rate of absorption is reduced with a mean delay in Tmax of 60 minutes and a mean reduction in Cmax of 29%.

Distribution

The mean steady state volume of distribution (Vd) for sildenafil is 105 l, indicating distribution into the tissues. After a single oral dose of 100 mg, the mean maximum total plasma concentration of sildenafil is approximately 440 ng/ml (CV 40%). Since sildenafil (and its major circulating N-desmethyl metabolite) is 96% bound to plasma proteins, this results in the mean maximum free plasma concentration for sildenafil of 18 ng/ml (38 nM). Protein binding is independent of total drug concentrations.

In healthy volunteers receiving sildenafil (100mg single dose), less than 0.0002% (average 188ng) of the administered dose was present in ejaculate 90 minutes after dosing.

Biotransformation

Sildenafil is cleared predominantly by the CYP3A4 (major route) and CYP2C9 (minor route) hepatic microsomal isoenzymes. The major circulating metabolite results from N-demethylation of sildenafil. This metabolite has a phosphodiesterase selectivity profile similar to sildenafil and an in vitro potency for PDE5 approximately 50% that of the parent drug. Plasma concentrations of this metabolite are approximately 40% of those seen for sildenafil. The N-desmethyl metabolite is further metabolised, with a terminal half life of approximately 4 h.

Elimination

The total body clearance of sildenafil is 41 l/h with a resultant terminal phase half life of 3-5 h. After either oral or intravenous administration, sildenafil is excreted as metabolites predominantly in the faeces (approximately 80% of administered oral dose) and to a lesser extent in the urine (approximately 13% of administered oral dose).

Pharmacokinetics in special patient groups

Elderly

Healthy elderly volunteers (65 years or over) had a reduced clearance of sildenafil, resulting in approximately 90% higher plasma concentrations of sildenafil and the active N-desmethyl metabolite compared to those seen in healthy younger volunteers (18-45 years). Due to age-differences in plasma protein binding, the corresponding increase in free sildenafil plasma concentration was approximately 40%.

Renal insufficiency

In volunteers with mild to moderate renal impairment (creatinine clearance = 30-80 ml/min), the pharmacokinetics of sildenafil were not altered after receiving a 50mg single oral dose. The mean AUC and Cmax of the N-desmethyl metabolite increased up to 126% and up to 73% respectively, compared to age-matched volunteers with no renal impairment. However, due to high inter-subject variability, these differences were not statistically significant. In volunteers with severe renal impairment (creatinine clearance < 30 ml/min), sildenafil clearance was reduced, resulting in mean increases in AUC and Cmax of 100% and 88% respectively compared to age-matched volunteers with no renal impairment. In addition, N-desmethyl metabolite AUC and Cmax values were significantly increased by 200% and 79% respectively.

Hepatic insufficiency

In volunteers with mild to moderate hepatic cirrhosis (Child-Pugh A and B) sildenafil clearance was reduced, resulting in increases in AUC (84%) and Cmax (47%) compared to age-matched volunteers with no hepatic impairment. The

pharmacokinetics of sildenafil in patients with severely impaired hepatic function has not been studied.

5.3 Preclinical safety data

Non-clinical data revealed no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential, and toxicity to reproduction and development..

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Avicel Ph101
Dicalcium Phosphate
Cmc Sodium
Aerosil 200
Talc Powder
Magnesium Stearate
Luster Clear
Titanium Dioxide
FD&C Blue #2 Dye

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3years

6.4 Special precautions for storage

Store below 30°C in a dry place.

6.5 Nature and contents of container

The primary packaging materials used is: Transparent colorless PVC/PVDC/Aluminum blister

One Aluminum / PVC blisters contain 1 x 4 tablets packed in a printed cardboard case.

6.6 Special precautions for disposal and other handling

No special requirements.

7. APPLICANT/MANUFACTURER

Afrab Chem Limited 22 Abimbola Street, Isolo Industrial Estate, Isolo-Lagos, Nigeria