Summary of Product Characteristics (SmPC)

1. NAME OF THE MEDICINAL PRODUCT

Nutrivin Multivitamin Syrup

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each 5ml contains:

Vitamin A BP (as palmitate) 1000 i.u., Vitamin B1 BP 1.5mg, Vitamin B2 BP 1.5mg, Vitamin B6 BP 1mg, Vitamin B12 BP 0.0025mg, Vitamin C BP 50mg, Vitamin D3 BP 200 i.u., Nicotinamide BP 10mg.

For a full list of excipients, see section 6.1

3. PHARMACEUTICAL FORM

Syrup. A yellow syrup

4. Clinical particulars

4.1 Therapeutic indications

Nutrivin Syrup is indicated for Multivitamin deficiencies and also useful as supplement.

4.2 Posology and method of administration

Posology

Children 2-12 years: 5ml to 10ml daily or as directed by the physician.

Method of administration

For oral use

4.3 Contraindications

Nutrivin Multivitamin Syrup is contraindicated in patients with hypersensitivity to any of active ingredients.

4.4 Special warnings and precautions for use

When administering Nutrivin Multivitamin syrup, as with all multi-vitamin preparations, allowance should be made for vitamins obtained from other sources.

While children are taking Nutrivin no other vitamin supplement containing vitamins A and D should be taken unless under medical supervision.

Excessive dosage of vitamin A and D may lead to hypervitaminoses. Due allowance should always be made for intake of these vitamins from other sources.

Patients with rare hereditary problems of fructose intolerance, glucose-galactose malabsorption or sucrase-isomaltase insufficiency should not take this medicine.

4.5 Interaction with other medicinal products and other forms of interaction

None.

4.6 Pregnancy and Lactation

Not indicated.

4.7 Effects on ability to drive and use machines

None known

4.8 Undesirable effects

Vitamin A palmitate

Adverse effects are extremely rare at daily doses of less than 9 mg (16363.6 iu).

Cholecalciferol (Vitamin D₃)

The only known adverse effects of vitamin D occur when excessive doses are taken. Adverse effects are not anticipated at the quantity present in Nutrivin Multivitamin syrup.

Ascorbic Acid (C), Nicotinamide, Pyridoxine (B₆), Riboflavin (B₂) & Thiamine (B₁)

These water soluble vitamins are generally non toxic compounds with a wide margin of safety, the excess amounts being rapidly excreted in the urine. Adverse effects are not anticipated at the quantities present in Nutrivin Multivitamin syrup.

4.9 Overdose

Symptoms and signs

Nutrivin Multivitamin Syrup contains levels of vitamins which present little risk in overdose.

Vitamin A palmitate

Acute administration of high doses of vitamin A can cause headache, nausea, vomiting and irritability. In infants acute toxicity can lead to transient hydrocephalus. All these effects disappear within 24 hours of taking retinol.

Cholecalciferol (Vitamin D₃)

Excessive doses of vitamin D, 60 000 units per day, can result in hypercalcaemia and hypercalciuria. Adverse effects of hypercalcaemia may include muscle weakness, apathy, headache, anorexia, nausea and vomiting, hypertension and cardiac arrhythmias.

Thiamine hydrochloride (Vitamin B₁)

When taken orally, thiamine is non-toxic. If large doses are ingested they are not stored by the body but excreted unchanged by the kidneys.

Riboflavin (Vitamin B₂)

Riboflavin has been found to be practically non-toxic.

Pyridoxine hydrochloride (Vitamin B₆)

Acute doses less than 500mg per day appear to be safe. Excessive doses may lower serum folate concentrations. Sensory neuropathy has been described with chronic dosing of 200 mg daily.

Nicotinamide

A single large overdose of nicotinamide is unlikely to have serious ill effects, though transient abnormalities of liver function might occur.

Ascorbic acid (Vitamin C)

Ascorbic acid is not stored to a great extent by the body, any excess amounts are eliminated in the urine. Ascorbic acid is thought to become toxic at chronic doses in excess of 6 g.

Treatment

Treatment should be supportive and symptomatic.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamics properties Pharmacotherapeutic

Vitamin A palmitate

Vitamin A plays an essential role in the function of the retina, the growth and function of epithelial tissue, bone growth, reproduction and embryonic development.

Cholecalciferol (Vitamin D₃)

Vitamin D is a regulator of both calcium and phosphate homeostasis.

Thiamine hydrochloride (Vitamin B₁)

Vitamin B_1 is essential for proper carbohydrate metabolism and plays an essential role in the decarboxylation of alpha keto acids.

Riboflavin (Vitamin B₂)

Riboflavin is essential for the utilisation of energy from food. It is a component of co-enzymes which play an essential role in oxidative/ reductive metabolic reactions. Riboflavin is also necessary for the functioning of pyridoxine and nicotinic acid.

Pyridoxine hydrochloride (Vitamin B₆)

Vitamin B₆ is a constituent of the co-enzymes, pyridoxal pyrophosphate and pyridoxamine phosphate, both of which play an important role in protein metabolism.

Nicotinamide

Nicotinamide is an essential component of co-enzymes responsible for proper tissue respiration.

Ascorbic acid (Vitamin C)

Ascorbic acid is a water soluble vitamin and a powerful antioxidant.

It is a cofactor in numerous biological processes, such as the metabolism of folic acid, amino acid oxidation and the absorption and transport of iron.

It is also required for the formation, maintenance and repair of intercellular cement material. Ascorbic acid is important in the defence against infection, the normal functioning of T-lymphocytes and for the effective phagocytic activity of leucocytes. It also protects cells against oxidation damage to essential molecules.

5.2 Pharmacokinetic properties

Absorption

Vitamins A, B1, B2, B6, C, D₃ and Nicotinamide are well absorbed from the gastro-intestinal tract.

Distribution

The vitamins present in Nutrivin Multivitamin syrup are widely distributed to all tissues in the body.

Metabolism and Elimination

Vitamin A palmitate

Vitamin A palmitate is hydrolysed in the intestinal lumen to retinol which is then absorbed. Retinol circulates in the blood bound to retinol binding protein which protects it from glomerular filtration. The complex circulates to target tissues where the vitamin is released, permeates the cell and binds intracellularly to cellular retinol binding protein. Of the absorbed retinol 20 - 50 % is either conjugated or oxidised to various products and excreted over a matter of days in the urine and faeces, while the remainder is stored. This stored retinol is gradually metabolised by the liver and peripheral tissues.

Cholecalciferol (Vitamin D₃)

Vitamin D circulates in the blood associated with vitamin D binding protein. It is stored in fat deposits. Cholecalciferol is hydroxylated in the liver and gut to 25-hydroxy cholecalciferol which is then further metabolised in the kidney to the active form 1,25-dihydroxycholecalciferol and other hydroxylated metabolites. Cholecalciferol and its metabolites are excreted largely in bile with eventual elimination in the faeces, with only small amounts of some of the metabolites appearing in the urine.

Thiamine hydrochloride (Vitamin B₁)

Thiamine has a plasma half-life of 24 hours and is not stored to any great extent in the body. Excess ingested thiamine is excreted in the urine as either the free vitamin or as the metabolite, pyrimidine.

Riboflavin (Vitamin B₂)

Following absorption riboflavin is converted into the co-enzymes: flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).

Riboflavin is not stored in body tissues to any great extent and amounts in excess of the body's requirements are excreted in the urine largely unchanged.

Pyridoxine hydrochloride (Vitamin B₆)

The half-life of pyridoxine ranges from 15 - 20 days. Once absorbed vitamin B6 is converted to its active co-enzyme form pyridoxal 5-phosphate. Muscle is the major storage site for pyridoxal 5-phosphate. It is degraded in the liver to 4-pyridoxic acid which is eliminated by the kidneys.

Nicotinamide

Nicotinamide is readily taken up into tissues and utilized for the synthesis of the co-enzyme forms nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Nicotinamide is degraded in the liver and other organs to a number of products that are excreted in the urine, the major metabolites being n-methyl-2-pyridone-5-carboxamide and n-methylnicotinamide.

Ascorbic acid (Vitamin C)

Ascorbic acid reaches a maximum plasma concentration 4 hours following oral administration after which there is rapid urinary excretion. Following oral administration 60 % of the dose is excreted in 24 hours either as ascorbic acid or its metabolite dihydroascorbic acid.

The Elderly Not appropriate.

Renal Dysfunction

There have been no specific studies of Nutrivin Multivitamin syrup in renal impairment.

Hepatic Dysfunction

There have been no specific studies of Nutrivin Multivitamin syrup in hepatic dysfunction.

5.3 Preclinical safety data

Mutagenicity

There is insufficient information to determine the mutagenic potential of the active ingredients. However very large doses of vitamin C are claimed to be mutagenic.

Carcinogenicity

There is insufficient information to determine the carcinogenic potential of the active ingredients.

Teratogenicity

High doses of vitamin D are known to be teratogenic in experimental animals, but direct evidence for this is lacking in humans.

The teratogenicity of vitamin A in animals is well known, both high and low levels of the vitamin result in defects. But the significance of this for humans is in dispute. Synthetic versions of vitamin A (Isotretinoin and Etretinate) have been shown to be powerful teratogens. There is insufficient information to determine the teratogenic potential of the other active ingredients.

Fertility

Not appropriate.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Sucrose
Sodium CMC
Sodium Benzoate
Liquid glucose
Citric Acid
Disodium Edetate
Polysorbate 80
Ethanol (96%)
Banana essence
Raspberry essence
Purified water

6.2 Incompatibilities

None known.

6.3 Shelf life

2 years

6.4 Special precautions for storage

Store in a dry place below 30°C. Keep all medicines away from the reach children.

6.5 Nature and contents of container < and special equipment for use, administration or implantation>

100ml amber glass bottles with tamper evident ROPP cap.

6.6 Special precautions for disposal <and other handling>

No special requirements.

Any unused product or waste material should be disposed of in accordance with local requirement

7. APPLICANT/MANUFACTURER

Unique Pharmaceuticals Limited

Km 38, Abeokuta Road, Sango-Ota, Ogun State, Nigeria.

Tel: 08097421000

Email: mail@uniquepharm.com