

# National Agency for Food & Drug Administration & Control (NAFDAC)

Registration & Regulatory Affairs (R & R) Directorate

**SUMMARY OF PRODUCT CHARACTERISTICS (SmPC)** 



## 1. NAME OF THE MEDICINAL PRODUCT

Levetiracetam Tablets SUVITRA

### 2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each Film coated tablet contains

Levetiracetam USP .....500 mg

Levetiracetam USP ......750 mg

For the full list of excipients, see section 6.1.

### 3. PHARMACEUTICAL FORM

Film coated Tablets

Levetiracetam 500 mg

Blue coloured, oblong shaped film-coated tablets with MICRO engraved on one surface break line on other surface

Levetiracetam 750 mg

Blue coloured, oblong shaped film-coated tablets with MICRO engraved on both the sides.

## 4. CLINICAL PARTICULARS

## 4.1 Therapeutic indications:

Levetiracetam is indicated as monotherapy in the treatment of partial onset seizures with or without secondary generalization in adults and adolescents from 16 years of age with newly diagnosed epilepsy. Levetiracetam is indicated as adjunctive therapy

- In the treatment of partial onset seizures with or without secondary generalizations in adults, adolescents, children and infants from 1 month of age with epilepsy.
- In the treatment of myoclonic seizures in adults and adolescents from 12 years of age with Juvenile Myoclonic Epilepsy.
- In the treatment of primary generalized tonic-clonic seizures in adults and adolescents from 12 years
  of age with Idiopathic Generalized Epilepsy.

## 4.2 Posology and method of administration:

## Posology

Partial onset seizures



The recommended dosing for monotherapy (from 16 years of age) and adjunctive therapy is the same; as outlined below.

All indications

Adults (≥18 years) and adolescents (12 to 17 years) weighing 50 kg or more

The initial therapeutic dose is 500 mg twice daily. This dose can be started on the first day of treatment. However, a lower initial dose of 250 mg twice daily may be given based on physician assessment of seizure reduction versus potential side effects. This can be increased to 500 mg twice daily after two weeks.

Depending upon the clinical response and tolerability, the daily dose can be increased up to 1,500 mg twice daily. Dose changes can be made in 250 mg or 500 mg twice daily increases or decreases every two to four weeks.

Adolescents (12 to 17 years) weighing below 50 kg and children from 1 month of age

The physician should prescribe the most appropriate pharmaceutical form, presentation and strength according to weight, age and dose. Refer to *Pediatric population* section for dosing adjustments based on weight.

Depending upon the clinical response and tolerability, the daily dose can be increased up to 1,500 mg twice daily. Dose changes can be made in 500 mg twice daily increases or decreases every two to four weeks.

## Discontinuation

If Levetiracetam has to be discontinued it is recommended to withdraw it gradually (*e.g.* in adults and adolescents weighing more than 50 kg: 500 mg decreases twice daily every two to four weeks; in infants older than 6 months, children and adolescents weighting less than 50 kg: dose decrease should not exceed 10 mg/kg twice daily every two weeks; in infants (less than 6 months): dose decrease should not exceed 7 mg/kg twice daily every two weeks).

Special populations

Elderly (65 years and older)

Adjustment of the dose is recommended in elderly patients with compromised renal function.

Renal impairment

The daily dose must be individualized according to renal function.



For adult patients, refer to the following table and adjust the dose as indicated. To use this dosing table, an estimate of the patient's creatinine clearance (CLcr) in ml/min is needed. The CLcr in ml/min may be estimated from serum creatinine (mg/dl) determination, for adults and adolescents weighting 50 kg or more, the following formula:

$$CLcr(\ ml/min) = \frac{[140 - age(\ years)\ ]\ X\ weight(\ kg)}{72\ X\ serum\ creatinine(\ mg/dl)}\ X\ 0.85\ for\ women$$

Then CLcr is adjusted for body surface area (BSA) as follows:

CLcr( ml/min/1.7 m2)= 
$$\frac{\text{[CLcr(ml/min)}}{\text{BSA subject(m2)}} X 1.73$$

Dosing adjustment for adult and adolescent patients weighing more than 50 kg with impaired renal function:

| Group                   | Creatinine<br>(ml/min/1.73m²) | clearance | Dose and frequency                        |
|-------------------------|-------------------------------|-----------|-------------------------------------------|
| Normal                  | > 80                          |           | 500 to 1,500 mg twice daily               |
| Mild                    | 50-79                         |           | 500 to 1,000 mg twice daily               |
| Moderate                | 30-49                         |           | 250 to 750 mg twice daily                 |
| Severe                  | < 30                          |           | 250 to 500 mg twice daily                 |
| End-stage renal disease | -                             |           | 500 to 1,000 mg once daily <sup>(2)</sup> |
| patients                |                               |           |                                           |
| undergoing dialysis (1) |                               |           |                                           |

<sup>(1)</sup> A 750 mg loading dose is recommended on the first day of treatment with levetiracetam.

For children with renal impairment, levetiracetam dose needs to be adjusted based on the renal function as levetiracetam clearance is related to renal function. This recommendation is based on a study in adult renally impaired patients.

The CLcr in ml/min/1.73 m<sup>2</sup> may be estimated from serum creatinine (mg/dl) determination, for young adolescents, children and infants, using the following formula (Schwartz formula):

<sup>(2)</sup> Following dialysis, a 250 to 500 mg supplemental dose is recommended.



$$CLcr(ml/min/1.7 m2) = \frac{Height(cm) X ks}{Serum Creatinine(mg/dl)} X$$

Dosing adjustment for infants, children and adolescents patients weighing less than 50 kg with impaired renal function:

| Group Creatinine                                     |                              | Dose and frequency (1)                                                                               |  |  |  |
|------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
|                                                      | clearance<br>(ml/min/1.73m²) | Infants 1 to less than 6 Infants 6 to 23 months, children and adolescents weighing less than 50 kg   |  |  |  |
| Normal                                               | > 80                         | 7 to 21 mg/kg (0.07 to 10 to 30 mg/kg (0.10 to 0.30 ml/kg) 0.21 ml/kg) twice daily                   |  |  |  |
| Mild                                                 | 50-79                        | 7 to 14 mg/kg (0.07 to 10 to 20 mg/kg (0.10 to 0.20 ml/kg) 0.14 ml/kg) twice daily                   |  |  |  |
| Moderate                                             | 30-49                        | 3.5 to 10.5 mg/kg 5 to 15 mg/kg (0.05 to 0.15 ml/kg) (0.035 to 0.105 ml/kg) twice daily              |  |  |  |
| Severe                                               | < 30                         | 3.5 to 7 mg/kg (0.035 5 to 10 mg/kg (0.05 to 0.10 ml/kg) to 0.07 ml/kg) twice daily                  |  |  |  |
| End-stage renal disease patients undergoing dialysis |                              | 7 to 14 mg/kg (0.07 to 10 to 20 mg/kg (0.10 to 0.20 ml/kg) 0.14 ml/kg) once daily once daily (3) (5) |  |  |  |

<sup>(1)</sup> Levetiracetam oral solution should be used for doses under 250 mg, for doses not multiple of 250 mg when dosing recommendation is not achievable by taking multiple tablets and for patients unable to swallow tablets.

<sup>(2)</sup> A 10.5 mg/kg (0.105 ml/kg) loading dose is recommended on the first day of treatment with levetiracetam.

<sup>(3)</sup> A 15 mg/kg (0.15 ml/kg) loading dose is recommended on the first day of treatment with levetiracetam.

<sup>&</sup>lt;sup>(4)</sup> Following dialysis, a 3.5 to 7 mg/kg (0.035 to 0.07 ml/kg) supplemental dose is recommended.



(5) Following dialysis, a 5 to 10 mg/kg (0.05 to 0.10 ml/kg) supplemental dose is recommended.

# Hepatic impairment

No dose adjustment is needed in patients with mild to moderate hepatic impairment. In patients with severe hepatic impairment, the creatinine clearance may underestimate the renal insufficiency. Therefore a 50 % reduction of the daily maintenance dose is recommended when the creatinine clearance is  $< 60 \, \text{ml/min/1.73 m}^2$ .

## Paediatric population

The physician should prescribe the most appropriate pharmaceutical form, presentation and strength according to age, weight and dose.

The tablet formulation is not adapted for use in infants and children under the age of 6 years. Levetiracetam oral solution is the preferred formulation for use in this population. In addition, the available dose strengths of the tablets are not appropriate for initial treatment in children weighing less than 25 kg, for patients unable to swallow tablets or for the administration of doses below 250 mg. In all of the above cases Levetiracetam oral solution should be used.

## Monotherapy

The safety and efficacy of Levetiracetam in children and adolescents below 16 years as monotherapy treatment have not been established.

No data are available.

Adolescents (16 and 17 years of age) weighing 50 kg or more with partial onset seizures with or without secondary generalization with newly diagnosed epilepsy

Please refer to the above section on Adults (≥18 years) and adolescents (12 to 17 years) weighing 50 kg or more.

Add-on therapy for infants aged 6 to 23 months, children (2 to 11 years) and adolescents (12 to 17 years) weighing less than 50 kg

Levetiracetam oral solution is the preferred formulation for use in infants and children under the age of 6 years.



For children 6 years and above, Levetiracetam oral solution should be used for doses under 250 mg, for doses not multiple of 250 mg when dosing recommendation is not achievable by taking multiple tablets and for patients unable to swallow tablets

The lowest effective dose should be used. The starting dose for a child or adolescent of 25kg should be 250mg twice daily with a maximum dose of 750mg twice daily. Dose in children 50 kg or greater is the same as in adults for all indications.

Please refer to the above section on Adults (≥18 years) and adolescents (12 to 17 years) weighing 50 kg or more for all indications.

Add-on therapy for infants aged from 1 month to less than 6 months

The oral solution is the formulation to use in infants.

## Method of administration

The film-coated tablets must be taken orally, swallowed with a sufficient quantity of liquid and may be taken with or without food. The daily dose is administered in two equally divided doses.

## 4.3 Contraindications:

Hypersensitivity to the active substance or other pyrrolidone derivatives or to any of the excipients listed in section 6.1.

## 4.4 Special warning and precautions:

## Renal impairment

The administration of Levetiracetam to patients with renal impairment may require dose adjustment. In patients with severely impaired hepatic function, assessment of renal function is recommended before dose selection.

## Acute Kidney injury

The use of Levetiracetam has been very rarely associated with acute kidney injury, with a time to onset ranging from a few days to several months.

## Blood cell counts

Rare cases of decreased blood cell counts (neutropenia, agranulocytosis, leucopenia, thrombocytopenia and pancytopenia) have been described in association with Levetiracetam administration, generally at the



beginning of the treatment. Complete blood cell counts are advised in patients experiencing important weakness, pyrexia, recurrent infections or coagulation disorders.

### Suicide

Suicide, suicide attempt, suicidal ideation and behaviour have been reported in patients treated with antiepileptic agents (including Levetiracetam. A meta-analysis of randomized placebo-controlled trials of antiepileptic medicinal products has shown a small increased risk of suicidal thoughts and behavior. The mechanism of this risk is not known.

Therefore patients should be monitored for signs of depression and/or suicidal ideation and behaviors and appropriate treatment should be considered. Patients (and caregivers of patients) should be advised. to seek medical advice should signs of depression and/or suicidal ideation or behavior emerge.

## Abnormal and aggressive behaviors

Levetiracetam may cause psychotic symptoms and behavioral abnormalities including irritability and aggressiveness. Patients treated with levetiracetam should be monitored for developing psychiatric signs suggesting important mood and/or personality changes. If such behaviors are noticed, treatment adaptation or gradual discontinuation should be considered. If discontinuation is considered, please refer to section 4.2.

## Worsening of seizures

As with other types of antiepileptic drugs, levetiracetam may rarely exacerbate seizure frequency or severity. This paradoxical effect was mostly reported within the first month after levetiracetam initiation or increase of the dose, and was reversible upon drug discontinuation or dose decrease. Patients should be advised to consult their physician immediately in case of aggravation of epilepsy.

### Electrocardiogram QT interval prolongation

Rare cases of ECG QT interval prolongation have been observed during the post-marketing surveillance. Levetiracetam should be used with caution in patients with QTc-interval prolongation, in patients concomitantly treated with drugs affecting the QTc-interval, or in patients with relevant pre-existing cardiac disease or electrolyte disturbances.

## Pediatric population

The tablet formulation is not adapted for use in infants and children under the age of 6 years.



Available data in children did not suggest impact on growth and puberty. However, long term effects on learning, intelligence, growth, endocrine function, puberty and childbearing potential in children remain unknown.

### 4.5 Interactions with Other Medicaments

## Antiepileptic medicinal products

Pre-marketing data from clinical studies conducted in adults indicate that levetiracetam did not influence the serum concentrations of existing antiepileptic medicinal products (phenytoin, carbamazepine, valproic acid, phenobarbital, lamotrigine, gabapentin and Primidone) and that these antiepileptic medicinal products did not influence the pharmacokinetics of levetiracetam.

As in adults, there is no evidence of clinically significant medicinal product interactions in pediatric patients receiving up to 60 mg/kg/day levetiracetam.

A retrospective assessment of pharmacokinetic interactions in children and adolescents with epilepsy (4 to 17 years) confirmed that adjunctive therapy with orally administered levetiracetam did not influence the steady-state serum concentrations of concomitantly administered carbamazepine and valproate. However, data suggested a 20 % higher levetiracetam clearance in children taking enzyme-inducing antiepileptic medicinal products. Dose adjustment is not required.

### Probenecid

Probenecid (500 mg four times daily), a renal tubular secretion blocking agent, has been shown to inhibit the renal clearance of the primary metabolite, but not of levetiracetam. Nevertheless, the concentration of this metabolite remains low.

## Methotrexate

Concomitant administration of levetiracetam and methotrexate has been reported to decrease methotrexate clearance, resulting in increased/prolonged blood methotrexate concentration to potentially toxic levels. Blood methotrexate and levetiracetam levels should be carefully monitored in patients treated concomitantly with the two drugs.

## Oral contraceptives and other pharmacokinetics interactions

Levetiracetam 1,000 mg daily did not influence the pharmacokinetics of oral contraceptives (ethinylestradiol and levonorgestrel); endocrine parameters (luteinizing hormone and progesterone) were not modified. Levetiracetam 2,000 mg daily did not influence the pharmacokinetics of digoxin and warfarin;



prothrombin times were not modified. Co-administration with digoxin, oral contraceptives and warfarin did not influence the pharmacokinetics of levetiracetam.

## Laxatives

There have been isolated reports of decreased levetiracetam efficacy when the osmotic laxative macrogol has been concomitantly administered with oral levetiracetam. Therefore, macrogol should not be taken orally for one hour before and for one hour after taking levetiracetam.

### Food and alcohol

The extent of absorption of levetiracetam was not altered by food, but the rate of absorption was slightly reduced. No data on the interaction of levetiracetam with alcohol are available.

## 4.6 Pregnancy and lactation:

# Women of child bearing potential

Specialist advice should be given to women who are of childbearing potential. Treatment with levetiracetam should be reviewed when a woman is planning to become pregnant. As with all antiepileptic medicines, sudden discontinuation of levetiracetam should be avoided as this may lead to breakthrough seizures that could have serious consequences for the woman and the unborn child. Monotherapy should be preferred whenever possible because therapy with multiple antiepileptic medicines AEDs could be associated with a higher risk of congenital malformations than monotherapy, depending on the associated antiepileptics.

## Pregnancy

A large amount of post marketing data on pregnant women exposed to levetiracetam monotherapy (more than 1800, among which in more than 1500 exposure occurred during the 1<sup>st</sup> trimester) do not suggest an increase in the risk for major congenital malformations. Only limited evidence is available on the neurodevelopment of children exposed to Levetiracetam monotherapy in utero. However, current epidemiological studies (on about 100 children) do not suggest an increased risk of neurodevelopmental disorders or delays.

Levetiracetam can be used during pregnancy, if after careful assessment it is considered clinically needed. In such case, the lowest effective dose is recommended.

Physiological changes during pregnancy may affect levetiracetam concentration. Decrease in levetiracetam plasma concentrations has been observed during pregnancy. This decrease is more



pronounced during the third trimester (up to 60% of baseline concentration before pregnancy). Appropriate clinical management of pregnant women treated with leveliracetam should be ensured.

## Lactation

Levetiracetam is excreted in human breast milk. Therefore, breast-feeding is not recommended.

However, if Levetiracetam treatment is needed during breastfeeding, the benefit/risk of the treatment should be weighed considering the importance of breastfeeding.

## **Fertility**

No impact on fertility was detected in animal studies. No clinical data are available, potential risk for human is unknown.

## 4.7 Effects on ability to drive and use machine:

Levetiracetam has minor or moderate influence on the ability to drive and use machines. Due to possible different individual sensitivity, some patients might experience somnolence or other central nervous system related symptoms, especially at the beginning of treatment or following a dose increase. Therefore, caution is recommended in those patients when performing skilled tasks, e.g. driving vehicles or operating machinery. Patients are advised not to drive or use machines until it is established that their ability to perform such activities is not affected.

## 4.8 Undesirable effects:

Summary of the safety profile

The most frequently reported adverse reactions were nasopharyngitis, somnolence, headache, fatigue and dizziness. The adverse reaction profile presented below is based on the analysis of pooled placebo-controlled clinical trials with all indications studied, with a total of 3,416 patients treated with Levetiracetam. These data are supplemented with the use of Levetiracetam in corresponding open-label extension studies, as well as post-marketing experience. The safety profile of Levetiracetam is generally similar across age groups (adult and paediatric patients) and across the approved epilepsy indications. Since there was limited exposure for Levetiracetam intravenous use and since oral and intravenous formulations are bioequivalent, the safety information of Levetiracetam intravenous will rely on Levetiracetam oral use.



# Tabulated list of adverse reactions

Adverse reactions reported in clinical studies (adults, adolescents, children and infants > 1 month) and from post-marketing experience are listed in the following table per System Organ Class and per frequency. Adverse reactions are presented in the order of decreasing seriousness and their frequency is defined as follows: very common ( $\geq 1/10$ ); common ( $\geq 1/100$  to <1/10); uncommon ( $\geq 1/1,000$  to <1/10); rare ( $\geq 1/10,000$  to <1/10,000).

| MedDRA SOC       | Frequency category |                          |                       |                    |  |
|------------------|--------------------|--------------------------|-----------------------|--------------------|--|
|                  | Very common        | Common                   | Uncommon              | Rare               |  |
| Infections and   | Nasopharyngitis    |                          |                       | Infection          |  |
| infestations     |                    |                          |                       |                    |  |
| Blood and        |                    |                          | Thrombocytopenia,     | Pancytopenia,      |  |
| lymphatic system |                    |                          | leukopenia            | neutropenia,       |  |
| disorders        |                    |                          |                       | agranulocytosis    |  |
| Immune system    |                    |                          |                       | Drug reaction with |  |
| disorders        |                    |                          |                       | eosinophilia and   |  |
|                  |                    |                          |                       | systemic           |  |
|                  |                    |                          |                       | symptoms           |  |
|                  |                    |                          |                       | (DRESS),           |  |
|                  |                    |                          |                       | Hypersensitivity   |  |
|                  |                    |                          |                       | (including         |  |
|                  |                    |                          |                       | angioedema and     |  |
|                  |                    |                          |                       | anaphylaxis)       |  |
| Metabolism and   |                    | Anorexia                 | Weight decreased,     | Hyponatraemia      |  |
| nutrition        |                    |                          | weight increase       |                    |  |
| disorders        |                    |                          |                       |                    |  |
| Psychiatric      |                    | Depression, hostility/   | Suicide attempt,      | Completed suicide, |  |
| disorders        |                    | aggression, anxiety,     | suicidal ideation,    | personality        |  |
|                  |                    | insomnia,                | psychotic disorder,   | disorder, thinking |  |
|                  |                    | nervousness/irritability | abnormal behaviour,   | abnormal, delirium |  |
|                  |                    |                          | hallucination, anger, |                    |  |
|                  |                    |                          | confusional state ,   |                    |  |



| Nervous system                                           | Somnolence, | Convulsion, balance   | panic attack, affect<br>lability/mood swings,<br>agitation  Amnesia, memory | Choreoathetosis,   |
|----------------------------------------------------------|-------------|-----------------------|-----------------------------------------------------------------------------|--------------------|
| disorders                                                | headache    |                       | impairment,                                                                 | dyskinesia,        |
|                                                          |             | lethargy, tremor      | coordination                                                                | hyperkinesia, gait |
|                                                          |             |                       | abnormal/ataxia,                                                            | disturbance,       |
|                                                          |             |                       | paraesthesia,                                                               | encephalopathy,    |
|                                                          |             |                       | disturbance in                                                              | seizures           |
|                                                          |             |                       | attention                                                                   | aggravated         |
| Eye disorders                                            |             |                       | Diplopia, vision                                                            |                    |
|                                                          |             |                       | blurred                                                                     |                    |
| Ear and labyrinth                                        |             | Vertigo               |                                                                             |                    |
| disorders                                                |             |                       |                                                                             |                    |
| Cardiac disorders                                        |             |                       |                                                                             | Electrocardiogram  |
|                                                          |             |                       |                                                                             | QT prolonged       |
| Respiratory,<br>thoracic and<br>mediastinal<br>disorders |             | Cough                 |                                                                             |                    |
| Gastrointestinal                                         |             | Abdominal pain,       |                                                                             | Pancreatitis       |
| disorders                                                |             | diarrhoea, dyspepsia, |                                                                             |                    |
|                                                          |             | vomiting, nausea      |                                                                             |                    |
| Hepatobiliary                                            |             |                       | Liver function test                                                         | Hepatic failure,   |
| disorders                                                |             |                       | abnormal                                                                    | hepatitis          |
| Renal and                                                |             |                       |                                                                             | Acute Kidney       |
| Urinary Disorders                                        |             |                       |                                                                             | injury             |
| Skin and                                                 |             | Rash                  | Alopecia, eczema,                                                           | Toxic epidermal    |
| subcutaneous                                             |             |                       | pruritus,                                                                   | necrolysis,        |
| tissue disorders                                         |             |                       |                                                                             | Stevens-Johnson    |



|                                                      |                  |                               | syndrome,<br>erythema<br>multiforme                                 |
|------------------------------------------------------|------------------|-------------------------------|---------------------------------------------------------------------|
| Musculoskeletal and connective tissue disorders      |                  | Muscular weakness,<br>myalgia | Rhabdomyolysis<br>and blood creatine<br>phosphokinase<br>increased* |
| General disorders and administration site conditions | Asthenia/fatigue |                               |                                                                     |
| Injury, poisoning and procedural complications       |                  | Injury                        |                                                                     |

<sup>\*</sup> Prevalence is significantly higher in Japanese patients when compared to non-Japanese patients.

Cases of encephalopathy have been rarely observed after Levetiracetam administration. These undesirable effects generally occurred at the beginning of the treatment (few days to a few months) and

were reversible after treatment discontinuation.

# Description of selected adverse reactions

The risk of anorexia is higher when Levetiracetam is coadministered with topiramate.

In several cases of alopecia, recovery was observed when Levetiracetam was discontinued.

Bone marrow suppression was identified in some of the cases of pancytopenia.

# Paediatric population

In patients aged 1 month to less than 4 years, a total of 190 patients have been treated with Levetiracetam in placebo-controlled and open label extension studies. Sixty of these patients were treated with Levetiracetam in placebo-controlled studies. In patients aged 4-16 years, a total of 645 patients have been treated with Levetiracetam in placebo-controlled and open label extension studies. 233 of these patients were treated with Levetiracetam in placebo-controlled studies. In both these paediatric age ranges, these data are supplemented with the post-marketing experience of the use of Levetiracetam.



In addition, 101 infants aged less than 12 months have been exposed in a post authorization safety study. No new safety concerns for Levetiracetam were identified for infants less than 12 months of age with epilepsy.

The adverse reaction profile of Levetiracetam is generally similar across age groups and across the approved epilepsy indications. Safety results in paediatric patients in placebo-controlled clinical studies were consistent with the safety profile of Levetiracetam in adults except for behavioural and psychiatric adverse reactions which were more common in children than in adults. In children and adolescents aged 4 to 16 years, vomiting (very common, 11.2%), agitation (common, 3.4%), mood swings (common, 2.1%), affect lability (common, 1.7%), aggression (common, 8.2%), abnormal behaviour (common, 5.6%), and lethargy (common, 3.9%) were reported more frequently than in other age ranges or in the overall safety profile. In infants and children aged 1 month to less than 4 years, irritability (very common, 11.7%) and coordination abnormal (common, 3.3%) were reported more frequently than in other age groups or in the overall safety profile.

A double-blind, placebo-controlled paediatric safety study with a non-inferiority design has assessed the cognitive and neuropsychological effects of Levetiracetam in children 4 to 16 years of age with partial onset seizures. It was concluded that Levetiracetam was not different (non inferior) from placebo with regard to the change from baseline of the Leiter-R Attention and Memory, Memory Screen Composite score in the per-protocol population. Results related to behavioural and emotional functioning indicated a worsening in Levetiracetam treated patients on aggressive behaviour as measured in a standardised and systematic way using a validated instrument (CBCL – Achenbach Child Behaviour Checklist). However subjects, who took Levetiracetam in the long-term open label follow-up study, did not experience a worsening, on average, in their behavioural and emotional functioning; in particular measures of aggressive behaviour were not worse than baseline.

## 4.9 Overdose:

## **Symptoms**

Somnolence, agitation, aggression, depressed level of consciousness; respiratory depression and coma were observed with Levetiracetam overdoses.



## Management of overdose

After an acute overdose, the stomach may be emptied by gastric lavage or by induction of emesis. There is no specific antidote for levetiracetam. Treatment of an overdose will be symptomatic and may include hemodialysis. The dialyser extraction efficiency is 60 % for levetiracetam and 74 % for the primary metabolite.

# 5. Pharmacological Properties

# 5.1 Pharmacodynamic Properties:

Pharmacotherapeutic group: antiepileptics, other antiepileptics, ATC code: N03AX14.

The active substance, Levetiracetam, is a pyrrolidone derivative (S-enantiomer of a-ethyl-2-oxo-1-pyrrolidine acetamide), chemically unrelated to existing antiepileptic active substances.

## Mechanism of action

The mechanism of action of Levetiracetam still remains to be fully elucidated. *In vitro* and *in vivo* experiments suggest that Levetiracetam does not alter basic cell characteristics and normal neurotransmission.

In vitro studies show that Levetiracetam affects intraneuronal  $Ca^{2+}$  levels by partial inhibition of N-type  $Ca^{2+}$  currents and by reducing the release of  $Ca^{2+}$  from intraneuronal stores. In addition, it partially reverses the reductions in GABA- and glycine-gated currents induced by zinc and  $\beta$ -carbolines. Furthermore, Levetiracetam has been shown in *in vitro* studies to bind to a specific site in rodent brain tissue. This binding site is the synaptic vesicle protein 2A, believed to be involved in vesicle fusion and neurotransmitter exocytosis. Levetiracetam and related analogues show a rank order of affinity for binding to the synaptic vesicle protein 2A which correlates with the potency of their anti-seizure protection in the mouse audiogenic model of epilepsy. This finding suggests that the interaction between Levetiracetam and the synaptic vesicle protein 2A seems to contribute to the antiepileptic mechanism of action of the medicinal product.

## Pharmacodynamic effects

Levetiracetam induces seizure protection in a broad range of animal models of partial and primary generalized seizures without having a pro-convulsant effect. The primary metabolite is inactive.

In man, an activity in both partial and generalized epilepsy conditions (epileptiform discharge/photo paroxysmal response) has confirmed the broad spectrum pharmacological profile of Levetiracetam.



## Pediatric population

In pediatric patients (4 to 16 years of age), levetiracetam efficacy was established in a double-blind, placebo-controlled study, which included 198 patients and had a treatment duration of 14 weeks. In this study, the patients received levetiracetam as a fixed dose of 60 mg/kg/day (with twice a day dosing). 44.6 % of the levetiracetam treated patients and 19.6 % of the patients on placebo had a 50 % or greater reduction from baseline in the partial onset seizure frequency per week. With continued long-term treatment, 11.4 % of the patients were seizure-free for at least 6 months and 7.2 % were seizure-free for at least 1 year.

In pediatric patients (1 month to less than 4 years of age), levetiracetam efficacy was established in a double-blind, placebo-controlled study, which included 116 patients and had a treatment duration of 5 days. In this study, patients were prescribed 20 mg/kg, 25 mg/kg, 40 mg/kg or 50 mg/kg daily dose of oral solution based on their age titration schedule. A dose of 20 mg/kg/day titrating to 40 mg/kg/day for infants one month to less than six months and a dose of 25 mg/kg/day titrating to 50 mg/kg/day for infants and children 6 months to less than 4 years old, was use in this study. The total daily dose was administered twice daily.

## 5.2 Pharmacokinetic Properties:

Levetiracetam is a highly soluble and permeable compound. The pharmacokinetic profile is linear with low intra- and inter-subject variability. There is no modification of the clearance after repeated administration. There is no evidence for any relevant gender, race or circadian variability. The pharmacokinetic profile is comparable in healthy volunteers and in patients with epilepsy.

Due to its complete and linear absorption, plasma levels can be predicted from the oral dose of levetiracetam expressed as mg/kg bodyweight. Therefore, there is no need for plasma level monitoring of levetiracetam.

A significant correlation between saliva and plasma concentrations has been shown in adults and children (ratio of saliva/plasma concentrations ranged from 1 to 1.7 for oral tablet formulation and after 4 hours post-dose for oral solution formulation).

## Adults and adolescents

**Absorption:** Levetiracetam is rapidly absorbed after oral administration. Oral absolute bioavailability is close to 100 %.

Peak plasma concentrations ( $C_{max}$ ) are achieved at 1.3 hours after dosing. Steady-state is achieved after two days of a twice daily administration schedule.



Peak concentrations ( $C_{max}$ ) are typically 31 and 43  $\mu$ g/ml following a single 1,000 mg dose and repeated 1,000 mg twice daily dose, respectively.

The extent of absorption is dose-independent and is not altered by food.

Distribution: No tissue distribution data are available in humans.

Neither levetiracetam nor its primary metabolite is significantly bound to plasma proteins (< 10 %).

The volume of distribution of levetiracetam is approximately 0.5 to 0.7 l/kg, a value close to the total body water volume.

*Biotransformation:* Levetiracetam is not extensively metabolized in humans. The major metabolic pathway (24 % of the dose) is an enzymatic hydrolysis of the acetamide group. Production of the primary metabolite, ucb L057, is not supported by liver cytochrome  $P_{450}$  isoforms. Hydrolysis of the acetamide group was measurable in a large number of tissues including blood cells. The metabolite ucb L057 is pharmacologically inactive.

Two minor metabolites were also identified. One was obtained by hydroxylation of the pyrrolidone ring (1.6 % of the dose) and the other one by opening of the pyrrolidone ring (0.9 % of the dose).

Other unidentified components accounted only for 0.6 % of the dose.

No enantiomeric interconversion was evidenced *in vivo* for either levetiracetam or its primary metabolite. *In vitro*, levetiracetam and its primary metabolite have been shown not to inhibit the major human liver cytochrome P<sub>450</sub> isoforms (CYP3A4, 2A6, 2C9, 2C19, 2D6, 2E1 and 1A2), glucuronyl transferase (UGT1A1 and UGT1A6) and epoxide hydroxylase activities. In addition, levetiracetam does not affect the *in vitro* glucuronidation of valproic acid.

In human hepatocytes in culture, levetiracetam had little or no effect on CYP1A2, SULT1E1 or UGT1A1. Levetiracetam caused mild induction of CYP2B6 and CYP3A4. The in vitro data and *in vivo* interaction data on oral contraceptives, digoxin and warfarin indicate that no significant enzyme induction is expected *in vivo*. Therefore, the interaction of Levetiracetam with other substances, or *vice versa*, is unlikely.

*Elimination:* The plasma half-life in adults was  $7\pm1$  hours and did not vary either with dose, route of administration or repeated administration. The mean total body clearance was 0.96 ml/min/kg.

The major route of excretion was via urine, accounting for a mean 95 % of the dose (approximately 93 % of the dose was excreted within 48 hours). Excretion *via* faces accounted for only 0.3 % of the dose.



The cumulative urinary excretion of levetiracetam and its primary metabolite accounted for 66 % and 24 % of the dose, respectively during the first 48 hours.

The renal clearance of levetiracetam and ucb L057 is 0.6 and 4.2 ml/min/kg respectively indicating that levetiracetam is excreted by glomerular filtration with subsequent tubular reabsorption and that the primary metabolite is also excreted by active tubular secretion in addition to glomerular filtration. Levetiracetam elimination is correlated to creatinine clearance.

## **Elderly**

In the elderly, the half-life is increased by about 40 % (10 to 11 hours). This is related to the decrease in renal function in this population

## Renal impairment

The apparent body clearance of both levetiracetam and of its primary metabolite is correlated to the creatinine clearance. It is therefore recommended to adjust the maintenance daily dose of Levetiracetam, based on creatinine clearance in patients with moderate and severe renal impairment

In anuric end-stage renal disease adult subjects the half-life was approximately 25 and 3.1 hours during intradialytic and intradialytic periods, respectively.

The fractional removal of levetiracetam was 51 % during a typical 4-hour dialysis session.

## Hepatic impairment

In subjects with mild and moderate hepatic impairment, there was no relevant modification of the clearance of levetiracetam. In most subjects with severe hepatic impairment, the clearance of levetiracetam was reduced by more than 50 % due to a concomitant renal impairment.

## Pediatric population

### Children (4 to 12 years)

Following single oral dose administration (20 mg/kg) to epileptic children (6 to 12 years), the half-life of levetiracetam was 6.0 hours. The apparent body weight adjusted clearance was approximately 30 % higher than in epileptic adults.

Following repeated oral dose administration (20 to 60 mg/kg/day) to epileptic children (4 to 12 years), levetiracetam was rapidly absorbed. Peak plasma concentration was observed 0.5 to 1.0 hour after dosing. Linear and dose proportional increases were observed for peak plasma concentration and area



under the curve. The elimination half-life was approximately 5 hours. The apparent body clearance was 1.1 ml/min/kg.

Infants and children (1 month to 4 years)

Following single dose administration (20 mg/kg) of a 100 mg/ml oral solution to epileptic children (1 month to 4 years), levetiracetam was rapidly absorbed and peak plasma concentrations were observed approximately 1 hour after dosing. The pharmacokinetic results indicated that half-life was shorter (5.3 h) than for adults (7.2 h) and apparent clearance was faster (1.5 ml/min/kg) than for adults (0.96 ml/min/kg).

In the population pharmacokinetic analysis conducted in patients from 1 month to 16 years of age, body weight was significantly correlated to apparent clearance (clearance increased with an increase in body weight) and apparent volume of distribution. Age also had an influence on both parameters. This effect was pronounced for the younger infants, and subsided as age increased, to become negligible around 4 years of age.

In both population pharmacokinetic analyses, there was about a 20 % increase of apparent clearance of levetiracetam when it was co-administered with an enzyme-inducing antiepileptic medicinal product.

### 5.3 Preclinical safety Data:

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, nontoxicity and carcinogenic potential.

Adverse effects not observed in clinical studies but seen in the rat and to a lesser extent in the mouse at exposure levels similar to human exposure levels and with possible relevance for clinical use were liver changes, indicating an adaptive response such as increased weight and centrilobular hypertrophy, fatty infiltration and increased liver enzymes in plasma.

No adverse reactions on male or female fertility or reproduction performance were observed in rats at doses up to 1800 mg/kg/day (x 6 the MRHD on a mg/m2 or exposure basis) in parents and F1 generation.

Two embryo-foetal development (EFD) studies were performed in rats at 400, 1200 and 3600 mg/kg/day. At 3600 mg/kg/day, in only one of the 2 EFD studies, there was a slight decrease in foetal weight associated with a marginal increase in skeletal variations/minor anomalies. There was no effect on embryo mortality and no increased incidence of malformations. The NOAEL (No Observed Adverse Effect



Level) was 3600 mg/kg/day for pregnant female rats (x 12 the MRHD on a mg/m2 basis) and 1200 mg/kg/day for fetuses.

Four embryo-foetal development studies were performed in rabbits covering doses of 200, 600, 800, 1200 and 1800 mg/kg/day. The dose level of 1800 mg/kg/day induced a marked maternal toxicity and a decrease in foetal weight associated with increased incidence of fetuses with cardiovascular/skeletal anomalies. The NOAEL was <200 mg/kg/day for the dams and 200 mg/kg/day for the fetuses (equal to the MRHD on a mg/m2 basis).

A peri- and post-natal development study was performed in rats with Levetiracetam doses of 70, 350 and 1800 mg/kg/day. The NOAEL was ≥ 1800 mg/kg/day for the F0 females, and for the survival, growth and development of the F1 offspring up to weaning.(x 6 the MRHD on a mg/m2 basis).

Neonatal and juvenile animal studies in rats and dogs demonstrated that there were no adverse effects seen in any of the standard developmental or maturation endpoints at doses up to 1800 mg/kg/day (x 6-17 the MRHD on a mg/m2 basis)



## 6. Pharmaceutical Particulars

## 6.1 List of excipients:

Maize Starch

Povidone (K-30)

Microcrystalline cellulose

Croscarmellose sodium

Colloidal silicon dioxide

Magnesium stearate

Hypromellose

Talc

Titanium dioxide

Polyethylene glycol

Indigo carmine lake

# 6.2 Incompatibilities:

Not applicable

## 6.3 Shelf life:

3 years

# 6.4 Special precautions for storage:

Store below 30°C. Keep away from reach of children

## 6.5 Nature and contents of container:

Alu/Alu Pack of 10 Tablets

# 6.6 Special precautions for disposal and other handling

No special requirements.

# 7. Marketing Authorization Holder:

## MICRO LABS LIMITED

#31, Race Course Road

Bangalore-560001



INDIA

8. Marketing Authorization Numbers

--

9. Date of first authorization

--

10. Date of revision of text

July 2021