SUMMARY OF PRODUCT CHARACTERISTICS

DAPAZIGA (Dapagliflozin Tablets 10 mg)

1. NAME OF THE MEDICINAL PRODUCT Dapagliflozin Tablets 10 mg

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each film coated tablet contains Dapagliflozin Propanediol Monohydrate Equivalent to Dapagliflozin 10 mg Excipients q.s. Colour: Titanium Dioxide IP and Iron Oxide Yellow

3. PHARMACEUTICAL FORM

Film coated tablet

4. CLINICAL PARTICULARS

4.1Therapeutic indications:

Type 2 diabetes mellitus

DAPAZIGA is indicated in adults for the treatment of insufficiently controlled type 2 diabetes mellitus as an adjunct to diet and exercise

- as monotherapy when metformin is considered inappropriate due to intolerance.

- in addition to other medicinal products for the treatment of type 2 diabetes.

For study results with respect to combination of therapies, effects on glycaemic control and cardiovascular events, and the populations studied.

Heart failure

DAPAZIGA is indicated in adults for the treatment of symptomatic chronic heart failure with reduced ejection fraction.

4.2 Posology and method of administration:

Posology

Type 2 diabetes mellitus

The recommended dose is 10 mg dapagliflozin once daily.

When dapagliflozin is used in combination with insulin or an insulin secretagogue, such as a sulphonylurea, a lower dose of insulin or insulin secretagogue may be considered to reduce the risk of hypoglycaemia.

Heart failure

The recommended dose is 10 mg dapagliflozin once daily.

In the DAPA-HF study, dapagliflozin was administered in conjunction with other heart failure therapies.

Special populations

Treatment of diabetes mellitus in patients with renal impairment

As glycaemic efficacy is dependent on renal function, DAPAZIGA Tablets should not be initiated to improve glycaemic control in patients with a glomerular filtration rate [GFR] < 60 mL/min and should be discontinued at GFR persistently below 45 mL/min.

No dose adjustment is required based on renal function.

Treatment of heart failure in patients with renal impairment

No dose adjustment is required based on renal function.

There is limited experience with dapagliflozin for the treatment of heart failure in patients with severe renal impairment (GFR < 30 mL/min).

Hepatic impairment

No dose adjustment is necessary for patients with mild or moderate hepatic impairment. In patients with severe hepatic impairment, a starting dose of 5 mg is recommended. If well tolerated, the dose may be increased to 10 mg.

Patients with type 1 diabetes mellitus

DAPAZIGA Tablets is not recommended for the treatment of heart failure in patients with type 1 diabetes mellitus.

Elderly (\geq 65 years)

No dose adjustment is recommended based on age.

Paediatric population

The safety and efficacy of dapagliflozin in children aged 0 to < 18 years have not yet been established. No data are available.

Method of administration

DAPAZIGA Tablets can be taken orally once daily at any time of day with or without food. Tablets are to be swallowed whole.

4.3Contraindication:

Hypersensitivity to the active substance or to any of the excipients.

4.4 Special warnings and precautions for use

Renal impairment

Treatment of diabetes mellitus

The glycaemic efficacy of dapagliflozin is dependent on renal function, and efficacy is reduced in patients who have moderate renal impairment and is likely absent in patients with severe renal impairment. In subjects with moderate renal impairment (GFR < 60 mL/min), a higher proportion of subjects treated with dapagliflozin had adverse reactions of increase in creatinine, phosphorus, parathyroid hormone (PTH) and hypotension, compared with placebo.

To improve glycaemic control in the treatment of diabetes mellitus, DAPAZIGA Tablets should not be initiated in patients with a GFR < 60 mL/min and should be discontinued at GFR persistently below 45 mL/min. DAPAZIGA Tablets has not been studied in severe renal impairment (GFR < 30 mL/min) or end-stage renal disease (ESRD).

Monitoring of renal function is recommended as follows:

• Prior to initiation of dapagliflozin and at least yearly, thereafter.

- Prior to initiation of concomitant medicinal products that may reduce renal function and periodically thereafter.
- For renal function with GFR < 60 mL/min, at least 2 to 4 times per year.

Treatment of heart failure

There is limited experience with dapagliflozin for the treatment of heart failure in patients with severe renal impairment (GFR < 30 mL/min).

In patients treated with dapagliflozin for both heart failure and type 2 diabetes mellitus, additional glucose-lowering treatment should be considered if GFR falls persistently below 45 mL/min.

Hepatic impairment

There is limited experience in clinical studies in patients with hepatic impairment. Dapagliflozin exposure is increased in patients with severe hepatic impairment.

Use in patients at risk for volume depletion and/or hypotension

Due to its mechanism of action, dapagliflozin increases diuresis which may lead to the modest decrease in blood pressure observed in clinical studies. It may be more pronounced in patients with very high blood glucose concentrations.

Caution should be exercised in patients for whom a dapagliflozin-induced drop in blood pressure could pose a risk, such as patients on anti-hypertensive therapy with a history of hypotension or elderly patients.

In case of intercurrent conditions that may lead to volume depletion (e.g. gastrointestinal illness), careful monitoring of volume status (e.g. physical examination, blood pressure measurements, laboratory tests including haematocrit and electrolytes) is recommended. Temporary interruption of

treatment with dapagliflozin is recommended for patients who develop volume depletion until the depletion is corrected.

Diabetic ketoacidosis

Sodium-glucose co-transporter 2 (SGLT2) inhibitors should be used with caution in patients with increased risk of diabetic ketoacidosis (DKA). Patients who may be at higher risk of DKA include patients with a low beta-cell function reserve (e.g. type 1 diabetes patients, type 2 diabetes patients with low C-peptide or latent autoimmune diabetes in adults (LADA) or patients with a history of pancreatitis), patients with conditions that lead to restricted food intake or severe dehydration, patients for whom insulin doses are reduced and patients with increased insulin requirements due to acute medical illness, surgery or alcohol abuse.

The risk of diabetic ketoacidosis must be considered in the event of non-specific symptoms such as nausea, vomiting, anorexia, abdominal pain, excessive thirst, difficulty breathing, confusion, unusual fatigue or sleepiness. Patients should be assessed for ketoacidosis immediately if these symptoms occur, regardless of blood glucose level.

Before initiating dapagliflozin, factors in the patient history that may predispose to ketoacidosis should be considered.

Treatment should be interrupted in patients who are hospitalised for major surgical procedures or acute serious medical illnesses. Monitoring of ketones is recommended in these patients. Measurement of blood ketone levels is preferred to urine. Treatment with dapagliflozin may be restarted when the ketone values are normal and the patient's condition has stabilised.

Type 2 diabetes mellitus

Rare cases of DKA, including life-threatening and fatal cases, have been reported in patients treated with SGLT2 inhibitors, including dapagliflozin. In a number of cases, the presentation of the condition was atypical with only moderately increased blood glucose values, below 14 mmol/L (250 mg/dL).

In patients where DKA is suspected or diagnosed, dapagliflozin treatment should be stopped immediately.

Restarting SGLT2 inhibitor treatment in patients experiencing a DKA while on SGLT2 inhibitor treatment is not recommended, unless another clear precipitating factor is identified and resolved. Type 1 diabetes mellitus

In type 1 diabetes mellitus studies with dapagliflozin, DKA was reported with common frequency. Dapagliflozin 10 mg should not be used for treatment of patients with type 1 diabetes.

Necrotising fasciitis of the perineum (Fournier's gangrene)

Post-marketing cases of necrotising fasciitis of the perineum (also known as Fournier's gangrene) have been reported in female and male patients taking SGLT2 inhibitors. This is a rare but serious and potentially life-threatening event that requires urgent surgical intervention and antibiotic treatment.

Patients should be advised to seek medical attention if they experience a combination of symptoms of pain, tenderness, erythema, or swelling in the genital or perineal area, with fever or malaise. Be aware that either uro-genital infection or perineal abscess may precede necrotising fasciitis. If Fournier's gangrene is suspected, DAPAZIGA Tablets should be discontinued and prompt treatment (including antibiotics and surgical debridement) should be instituted.

Urinary tract infections

Urinary glucose excretion may be associated with an increased risk of urinary tract infection; therefore, temporary interruption of dapagliflozin should be considered when treating pyelonephritis or urosepsis.

Elderly (≥ 65 years)

Elderly patients may be at a greater risk for volume depletion and are more likely to be treated with diuretics.

Elderly patients are more likely to have impaired renal function, and/or to be treated with antihypertensive medicinal products that may cause changes in renal function such as angiotensinconverting enzyme inhibitors (ACE-I) and angiotensin II type 1 receptor blockers (ARB). The same recommendations for renal function apply to elderly patients as to all patients.

Cardiac failure

Experience with dapagliflozin in NYHA class IV is limited. Lower limb amputations

An increase in cases of lower limb amputation (primarily of the toe) has been observed in long-term, clinical studies in type 2 diabetes mellitus with SGLT2 inhibitors. It is unknown whether this constitutes a class effect. It is important to counsel patients with diabetes on routine preventative foot care.

Urine laboratory assessments

Due to its mechanism of action, patients taking DAPAZIGA Tablets will test positive for glucose in their urine.

4.5 Interaction with other medicinal products and other forms of interaction

Pharmacodynamic interactions

Diuretics

Dapagliflozin may add to the diuretic effect of thiazide and loop diuretics and may increase the risk of dehydration and hypotension.

Insulin and insulin secretagogues

Insulin and insulin secretagogues, such as sulphonylureas, cause hypoglycaemia. Therefore, a lower dose of insulin or an insulin secretagogue may be required to reduce the risk of hypoglycaemia when used in combination with dapagliflozin in patients with type 2 diabetes mellitus.

Pharmacokinetic interactions

The metabolism of dapagliflozin is primarily via glucuronide conjugation mediated by UDP glucuronosyltransferase 1A9 (UGT1A9).

In in vitro studies, dapagliflozin neither inhibited cytochrome P450 (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, nor induced CYP1A2, CYP2B6 or CYP3A4. Therefore, dapagliflozin is not expected to alter the metabolic clearance of coadministered medicinal products that are metabolised by these enzymes.

Effect of other medicinal products on dapagliflozin

Interaction studies conducted in healthy subjects, using mainly a single-dose design, suggest that the pharmacokinetics of dapagliflozin are not altered by metformin, pioglitazone, sitagliptin, glimepiride, voglibose, hydrochlorothiazide, bumetanide, valsartan, or simvastatin.

Following coadministration of dapagliflozin with rifampicin (an inducer of various active transporters and drug-metabolising enzymes) a 22% decrease in dapagliflozin systemic exposure (AUC) was observed, but with no clinically meaningful effect on 24-hour urinary glucose excretion. No dose adjustment is recommended. A clinically relevant effect with other inducers (e.g. carbamazepine, phenytoin, phenobarbital) is not expected.

Following coadministration of dapagliflozin with mefenamic acid (an inhibitor of UGT1A9), a 55% increase in dapagliflozin systemic exposure was seen, but with no clinically meaningful effect on 24-hour urinary glucose excretion. No dose adjustment is recommended.

Effect of dapagliflozin on other medicinal products

In interaction studies conducted in healthy subjects, using mainly a single-dose design, dapagliflozin did not alter the pharmacokinetics of metformin, pioglitazone, sitagliptin, glimepiride, hydrochlorothiazide, bumetanide, valsartan, digoxin (a P-gp substrate) or warfarin (S-warfarin, a CYP2C9 substrate), or the anticoagulatory effects of warfarin as measured by INR. Combination of a single dose of dapagliflozin 20 mg and simvastatin (a CYP3A4 substrate) resulted in a 19% increase in AUC of simvastatin and 31% increase in AUC of simvastatin acid. The increase in simvastatin and simvastatin acid exposures are not considered clinically relevant.

Interference with 1,5-anhydroglucitol (1,5-AG) assay

Monitoring glycaemic control with 1,5-AG assay is not recommended as measurements of 1,5-AG are unreliable in assessing glycaemic control in patients taking SGLT2 inhibitors. Use of alternative methods to monitor glycaemic control is advised.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation General principles

Pregnancy

There are no data from the use of dapagliflozin in pregnant women. Studies in rats have shown toxicity to the developing kidney in the time period corresponding to the second and third trimesters of human pregnancy. Therefore, the use of dapagliflozin is not recommended during the second and third trimesters of pregnancy.

When pregnancy is detected, treatment with dapagliflozin should be discontinued.

Breast-feeding

It is unknown whether dapagliflozin and/or its metabolites are excreted in human milk. Available pharmacodynamic/toxicological data in animals have shown excretion of dapagliflozin/metabolites in milk, as well as pharmacologically-mediated effects in nursing offspring. A risk to the newborns/infants cannot be excluded. Dapagliflozin should not be used while breast-feeding. <u>Fertility</u>

The effect of dapagliflozin on fertility in humans has not been studied. In male and female rats, dapagliflozin showed no effects on fertility at any dose tested.

4.7 Effects on ability to drive and use machines

DAPAZIGA Tablets has no or negligible influence on the ability to drive and use machines. Patients should be alerted to the risk of hypoglycaemia when dapagliflozin is used in combination with a sulphonylurea or insulin.

4.8 Undesirable effects

Summary of the safety profile

Type 2 diabetes mellitus

In the clinical studies in type 2 diabetes, more than 15,000 patients have been treated with dapagliflozin.

The primary assessment of safety and tolerability was conducted in a pre-specified pooled analysis of 13 short-term (up to 24 weeks) placebo-controlled studies with 2,360 subjects treated with dapagliflozin 10 mg and 2,295 treated with placebo.

In the dapagliflozin cardiovascular outcomes study in type 2 diabetes mellitus, 8,574 patients received dapagliflozin 10 mg and 8,569 received placebo for a median exposure time of 48 months. In total, there were 30,623 patient-years of exposure to dapagliflozin.

The most frequently reported adverse reactions across the clinical studies were genital infections. <u>Heart failure</u>

In the dapagliflozin cardiovascular outcome study in patients with heart failure with reduced ejection fraction (DAPA-HF study), 2,368 patients were treated with dapagliflozin 10 mg and 2,368 patients with placebo for a median exposure time of 18 months. The patient population included patients with type 2 diabetes mellitus and without diabetes, and patients with eGFR \geq 30 mL/min/1.73 m2.

The overall safety profile of dapagliflozin in patients with heart failure was consistent with the known safety profile of dapagliflozin.

Tabulated list of adverse reactions

The following adverse reactions have been identified in the placebo-controlled clinical studies and postmarketing surveillance. None were found to be dose-related. Adverse reactions listed below are classified according to frequency and system organ class (SOC). Frequency categories are defined according to the following convention: very common ($\geq 1/100$), common ($\geq 1/100$ to < 1/100), uncommon ($\geq 1/1,000$ to < 1/100), rare ($\geq 1/10,000$ to < 1/1,000), very rare (< 1/10,000), and not known (cannot be estimated from the available data).

 Table 1. Adverse reactions in placebo-controlled clinical studiesa and postmarketing experience

System organ	Very	Common*	Uncommon**	Rare	Very rare
class	common				
Infections and		Vulvovaginitis,	Fungal		Necrotising
infestations		balanitis and	infection**		fasciitis of
		related genital			the
		infections ^{*,b,c}			perineum
		Urinary tract			(Fournier's
		infection ^{*,b,d}			gangrene) ^{b,i}
Metabolism and	Hypoglycae		Volume	Diabetic	
nutrition	mia (when		depletionb,e	ketoacidosi	
disorders	used with		Thirst**	s (when	
	SU or			used in type	
	insulin)b			2 diabetes	
				mellitus)b,i,	
				k	
Nervous system		Dizziness			
disorders					
Gastrointestinal			Constipation**		
disorders			Dry mouth**		
Skin and		Rash			Angioedem
subcutaneous					а
tissue disorders					
Musculoskeleta		Back pain*			
l and					
connective					
tissue disorders					
Renal and		Dysuria	Nocturia**		
urinary		Polyuria*,f			
disorders					
Reproductive			Vulvovaginal		
system and			pruritus**		
breast disorders			Pruritus genital*		
Investigations		Haematocrit	Blood creatinine		
		increasedg	increased during		
		Creatinine renal	initial		
		clearance	treatment**,		
		decreased	Blood urea		
		during initial	increased**		
		treatmentb	Weight		
		Dyslipidaemiah	decreased**		

The table shows up to 24-week (short-term) data regardless of glycaemic rescue.

See corresponding subsection below for additional information.

Vulvovaginitis, balanitis and related genital infections includes, e.g. the predefined preferred terms: vulvovaginal mycotic infection, vaginal infection, balanitis, genital infection fungal, vulvovaginal candidiasis, vulvovaginitis, balanitis candida, genital candidiasis, genital infection, genital infection male, penile infection, vulvitis, vaginitis bacterial, vulval abscess.

Urinary tract infection includes the following preferred terms, listed in order of frequency reported: urinary tract infection, cystitis, Escherichia urinary tract infection, genitourinary tract infection, pyelonephritis, trigonitis, urethritis, kidney infection and prostatitis.

Volume depletion includes, e.g. the predefined preferred terms: dehydration, hypovolaemia, hypotension.

Polyuria includes the preferred terms: pollakiuria, polyuria, urine output increased.

Mean changes from baseline in haematocrit were 2.30% for dapagliflozin 10 mg versus-0.33% for placebo. Haematocrit values >55% were reported in 1.3% of the subjects treated with dapagliflozin 10 mg versus 0.4% of placebo subjects.

Mean percent change from baseline for dapagliflozin 10 mg versus placebo, respectively, was: total cholesterol 2.5% versus 0.0%; HDL cholesterol 6.0% versus 2.7%; LDL cholesterol 2.9% versus - 1.0%; triglycerides -2.7% versus -0.7%.

Adverse reaction was identified through postmarketing surveillance. Rash includes the following preferred terms, listed in order of frequency in clinical studies: rash, rash generalised, rash pruritic, rash macular, rash maculo-papular, rash pustular, rash vesicular, and rash erythematous. In active- and placebo-controlled clinical studies (dapagliflozin, N=5936, All control, N=3403), the frequency of rash was similar for dapagliflozin (1.4 %) and all control (1.4%), respectively.

Reported in the cardiovascular outcomes study in patients with type 2 diabetes (DECLARE). Frequency is based on annual rate.

*Reported in $\ge 2\%$ of subjects and $\ge 1\%$ more and at least 3 more subjects treated with dapagliflozin 10 mg compared to placebo.

**Reported by the investigator as possibly related, probably related or related to study treatment and reported in $\ge 0.2\%$ of subjects and $\ge 0.1\%$ more and at least 3 more subjects treated with dapagliflozin 10 mg compared to placebo.

Description of selected adverse reactions

Vulvovaginitis, balanitis and related genital infections

In the 13-study safety pool, vulvovaginitis, balanitis and related genital infections were reported in 5.5% and 0.6% of subjects who received dapagliflozin 10 mg and placebo, respectively. Most infections were mild to moderate, and subjects responded to an initial course of standard treatment and rarely resulted in discontinuation from dapagliflozin treatment. These infections were more frequent in females (8.4% and 1.2% for dapagliflozin and placebo, respectively), and subjects with a prior history were more likely to have a recurrent infection.

In the DECLARE study, the number of patients with serious adverse events of genital infections were few and balanced: 2 patients in each of the dapagliflozin and placebo groups.

In the DAPA-HF study, no patient reported serious adverse events of genital infections in the dapagliflozin group and one in the placebo group. There were 7 (0.3%) patients with adverse events leading to discontinuations due to genital infections in the dapagliflozin group and none in the placebo group.

Necrotising fasciitis of the perineum (Fournier's gangrene)

Cases of Fournier's gangrene have been reported postmarketing in patients taking SGLT2 inhibitors, including dapagliflozin.

In the DECLARE study with 17,160 type 2 diabetes mellitus patients and a median exposure time of 48 months, a total of 6 cases of Fournier's gangrene were reported, one in the dapagliflozin-treated group and 5 in the placebo group.

Hypoglycaemia

The frequency of hypoglycaemia depended on the type of background therapy used in the clinical studies in diabetes mellitus.

For studies of dapagliflozin in monotherapy, as add-on to metformin or as add-on to sitagliptin (with or without metformin), the frequency of minor episodes of hypoglycaemia was similar (< 5%) between treatment groups, including placebo up to 102 weeks of treatment. Across all studies, major events of hypoglycaemia were uncommon and comparable between the groups treated with dapagliflozin or placebo. Studies with add-on sulphonylurea and add-on insulin therapies had higher rates of hypoglycaemia.

In an add-on to glimepiride study, at weeks 24 and 48, minor episodes of hypoglycaemia were reported more frequently in the group treated with dapagliflozin 10 mg plus glimepiride (6.0% and 7.9%, respectively) than in the placebo plus glimepiride group (2.1% and 2.1%, respectively).

In the DECLARE study, no increased risk of major hypoglycaemia was observed with dapagliflozin therapy compared with placebo. Major events of hypoglycaemia were reported in 58 (0.7%) patients treated with dapagliflozin and 83 (1.0%) patients treated with placebo.

In the DAPA-HF study, major events of hypoglycaemia were reported in 4 (0.2%) patients in both the dapagliflozin and placebo treatment groups and observed only in patients with type 2 diabetes mellitus.

Volume depletion

In the 13-study safety pool, reactions suggestive of volume depletion (including, reports of dehydration, hypovolaemia or hypotension) were reported in 1.1% and 0.7% of subjects who received dapagliflozin 10 mg and placebo, respectively; serious reactions occurred in < 0.2% of subjects balanced between dapagliflozin 10 mg and placebo.

In the DECLARE study, the numbers of patients with events suggestive of volume depletion were balanced between treatment groups: 213 (2.5%) and 207 (2.4%) in the dapagliflozin and placebo groups, respectively. Serious adverse events were reported in 81 (0.9%) and 70 (0.8%) in the dapagliflozin and placebo group, respectively. Events were generally balanced between treatment groups across subgroups of age, diuretic use, blood pressure and angiotensin converting enzyme inhibitors (ACE-I)/angiotensin II type 1 receptor blockers (ARB) use. In patients with eGFR < 60 mL/min/1.73 m2 at baseline, there were 19 events of serious adverse events suggestive of volume depletion in the dapagliflozin group and 13 events in the placebo group.

In the DAPA-HF study, the numbers of patients with events suggestive of volume depletion were 170 (7.2%) in the dapagliflozin group and 153 (6.5%) in the placebo group. There were fewer patients with serious events of symptoms suggestive of volume depletion in the dapagliflozin group (23 [1.0%]) compared with the placebo group (38 [1.6%]). Results were similar irrespective of presence of diabetes at baseline and baseline eGFR.

Diabetic ketoacidosis in type 2 diabetes mellitus

In the DECLARE study, with a median exposure time of 48 months, events of DKA were reported in 27 patients in the dapagliflozin 10 mg group and 12 patients in the placebo group. The events occurred evenly distributed over the study period. Of the 27 patients with DKA events in the dapagliflozin group, 22 had concomitant insulin treatment at the time of the event. Precipitating factors for DKA were as expected in a type 2 diabetes mellitus population.

In the DAPA-HF study, events of DKA were reported in 3 patients with type 2 diabetes mellitus in the dapagliflozin group and none in the placebo group.

Urinary tract infections

In the 13-study safety pool, urinary tract infections were more frequently reported for dapagliflozin 10 mg compared to placebo (4.7% versus 3.5%, respectively. Most infections were mild to moderate, and subjects responded to an initial course of standard treatment and rarely resulted in discontinuation from dapagliflozin treatment. These infections were more frequent in females, and subjects with a prior history were more likely to have a recurrent infection.

In the DECLARE study, serious events of urinary tract infections were reported less frequently for dapagliflozin 10 mg compared with placebo, 79 (0.9%) events versus 109 (1.3%) events, respectively. In the DAPA-HF study, the numbers of patients with serious adverse events of urinary tract infections were 14 (0.6%) in the dapagliflozin group and 17 (0.7%) in the placebo group. There were 5 (0.2%) patients with adverse events leading to discontinuations due to urinary tract infections in each of the dapagliflozin and placebo groups.

Increased creatinine

Adverse reactions related to increased creatinine were grouped (e.g. decreased renal creatinine clearance, renal impairment, increased blood creatinine and decreased glomerular filtration rate). In the 13-study safety pool, this grouping of reactions was reported in 3.2% and 1.8% of patients who received dapagliflozin 10 mg and placebo, respectively. In patients with normal renal function or mild renal impairment (baseline eGFR ≥ 60 mL/min/1.73m2) this grouping of reactions were reported in 1.3% and 0.8% of patients who received dapagliflozin 10 mg and placebo, respectively. These reactions were more common in patients with baseline eGFR ≥ 30 and < 60 mL/min/1.73m2 (18.5% dapagliflozin 10 mg versus 9.3% placebo).

Further evaluation of patients who had renal-related adverse events showed that most had serum creatinine changes of ≤ 0.5 mg/dL from baseline. The increases in creatinine were generally transient during continuous treatment or reversible after discontinuation of treatment.

In the DECLARE study, including elderly patients and patients with renal impairment (eGFR less than 60 mL/min/1.73 m2), eGFR decreased over time in both treatment groups. At 1 year, mean eGFR was slightly lower, and at 4 years, mean eGFR was slightly higher in the dapagliflozin group compared with the placebo group.

In the DAPA-HF study, eGFR decreased over time in both the dapagliflozin group and the placebo group. The initial decrease in mean eGFR was -4.3 mL/min/1.73 m2 in the dapagliflozin group and - 1.1 mL/min/1.73 m2 in the placebo group. At 20 months, change from baseline in eGFR was similar between the treatment groups: -5.3 mL/min/1.73 m2 for dapagliflozin and -4.5 mL/min/1.73 m2 for placebo.

4.9 Overdose

Dapagliflozin did not show any toxicity in healthy subjects at single oral doses up to 500 mg (50 times the maximum recommended human dose). These subjects had detectable glucose in the urine for a dose-related period of time (at least 5 days for the 500 mg dose), with no reports of dehydration, hypotension or electrolyte imbalance, and with no clinically meaningful effect on QTc interval. The incidence of hypoglycaemia was similar to placebo. In clinical studies where once-daily doses of up to 100 mg (10 times the maximum recommended human dose) were administered for 2 weeks in healthy subjects and type 2 diabetes subjects, the incidence of hypoglycaemia was slightly higher than placebo and was not dose-related. Rates of adverse events including dehydration or hypotension were similar to placebo, and there were no clinically meaningful dose-related changes in laboratory parameters, including serum electrolytes and biomarkers of renal function.

In the event of an overdose, appropriate supportive treatment should be initiated as dictated by the patient's clinical status. The removal of dapagliflozin by haemodialysis has not been studied.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties:

Pharmacotherapeutic group: Drugs used in diabetes, sodium-glucose co-transporter 2 (SGLT2) inhibitors,

ATC code: A10BK01

Mechanism of action

Dapagliflozin is a highly potent (Ki: 0.55 nM), selective and reversible inhibitor of SGLT2.

Inhibition of SGLT2 by dapagliflozin reduces reabsorption of glucose from the glomerular filtrate in the proximal renal tubule with a concomitant reduction in sodium reabsorption leading to urinary excretion of glucose and osmotic diuresis. Dapagliflozin therefore increases the delivery of sodium to the distal tubule which is believed to increase tubuloglomerular feedback and reduce intraglomerular pressure. This combined with osmotic diuresis leads to a reduction in volume overload, reduced blood pressure, and lower preload and afterload, which may have beneficial effects on cardiac remodelling. Other effects include an increase in haematocrit and reduction in body weight. The cardiac benefits of dapagliflozin are not solely dependent on the blood glucose-lowering effect and not limited to patients with diabetes as demonstrated in the DAPA-HF study.

Dapagliflozin improves both fasting and post-prandial plasma glucose levels by reducing renal glucose reabsorption leading to urinary glucose excretion. This glucose excretion (glucuretic effect) is observed after the first dose, is continuous over the 24-hour dosing interval and is sustained for the duration of treatment. The amount of glucose removed by the kidney through this mechanism is dependent upon the blood glucose concentration and GFR. Thus, in subjects with normal blood glucose, dapagliflozin has a low propensity to cause hypoglycaemia. Dapagliflozin does not impair normal endogenous glucose production in response to hypoglycaemia. Dapagliflozin acts independently of insulin secretion and insulin action. Improvement in homeostasis model assessment for beta cell function (HOMA beta-cell) has been observed in clinical studies with dapagliflozin.

The SGLT2 is selectively expressed in the kidney. Dapagliflozin does not inhibit other glucose transporters important for glucose transport into peripheral tissues and is > 1,400 times more selective for SGLT2 versus SGLT1, the major transporter in the gut responsible for glucose absorption.

5.2 Pharmacokinetic properties:

Absorption

Dapagliflozin was rapidly and well absorbed after oral administration. Maximum dapagliflozin plasma concentrations (Cmax) were usually attained within 2 hours after administration in the fasted state. Geometric mean steady-state dapagliflozin Cmax and AUCt values following once daily 10 mg doses of dapagliflozin were 158 ng/mL and 628 ng h/mL, respectively. The absolute oral bioavailability of dapagliflozin following the administration of a 10 mg dose is 78%. Administration with a high-fat meal decreased dapagliflozin Cmax by up to 50% and prolonged Tmax by approximately 1 hour, but did not alter AUC as compared with the fasted state. These changes are not considered to be clinically meaningful. Hence, DAPAZIGA Tablets can be administered with or without food.

Distribution

Dapagliflozin is approximately 91% protein bound. Protein binding was not altered in various disease states (e.g. renal or hepatic impairment). The mean steady-state volume of distribution of dapagliflozin was 118 litres.

Biotransformation

Dapagliflozin is extensively metabolised, primarily to yield dapagliflozin 3-O-glucuronide, which is an inactive metabolite. Dapagliflozin 3-O-glucuronide or other metabolites do not contribute to the glucose-lowering effects. The formation of dapagliflozin 3-O-glucuronide is mediated by UGT1A9, an enzyme present in the liver and kidney, and CYP-mediated metabolism was a minor clearance pathway in humans.

Elimination

The mean plasma terminal half-life (t1/2) for dapagliflozin was 12.9 hours following a single oral dose of dapagliflozin 10 mg to healthy subjects. The mean total systemic clearance of dapagliflozin administered intravenously was 207 mL/min. Dapagliflozin and related metabolites are primarily eliminated via urinary excretion with less than 2% as unchanged dapagliflozin. After administration of a 50 mg [14C]-dapagliflozin dose, 96% was recovered, 75% in urine and 21% in faeces. In faeces, approximately 15% of the dose was excreted as parent drug.

5.3 Preclinical safety data:

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential and fertility. Dapagliflozin did not induce tumours in either mice or rats at any of the doses evaluated in two-year carcinogenicity studies.

Reproductive and developmental toxicity

Direct administration of dapagliflozin to weanling juvenile rats and indirect exposure during late pregnancy (time periods corresponding to the second and third trimesters of pregnancy with respect to human renal maturation) and lactation are each associated with increased incidence and/or severity of renal pelvic and tubular dilatations in progeny.

In a juvenile toxicity study, when dapagliflozin was dosed directly to young rats from postnatal day 21 until postnatal day 90, renal pelvic and tubular dilatations were reported at all dose levels; pup exposures at the lowest dose tested were \geq 15 times the maximum recommended human dose. These findings were associated with dose-related increases in kidney weight and macroscopic kidney enlargement observed at all doses. The renal pelvic and tubular dilatations observed in juvenile animals did not fully reverse within the approximate 1-month recovery period.

In a separate study of pre- and postnatal development, maternal rats were dosed from gestation day 6 through postnatal day 21, and pups were indirectly exposed in utero and throughout lactation. (A satellite study was conducted to assess dapagliflozin exposures in milk and pups.) Increased incidence or severity of renal pelvic dilatation was observed in adult offspring of treated dams, although only at the highest dose tested (associated maternal and pup dapagliflozin exposures were 1,415 times and 137 times, respectively, the human values at the maximum recommended human dose). Additional developmental toxicity was limited to dose-related reductions in pup body

weights, and observed only at doses $\geq 15 \text{ mg/kg/day}$ (associated with pup exposures that are ≥ 29 times the human values at the maximum recommended human dose). Maternal toxicity was evident only at the highest dose tested, and limited to transient reductions in body weight and food consumption at dose. The no observed adverse effect level (NOAEL) for developmental toxicity, the lowest dose tested, is associated with a maternal systemic exposure multiple that is approximately 19 times the human value at the maximum recommended human dose.

In additional studies of embryo-foetal development in rats and rabbits, dapagliflozin was administered for intervals coinciding with the major periods of organogenesis in each species. Neither maternal nor developmental toxicities were observed in rabbits at any dose tested; the highest dose tested is associated with a systemic exposure multiple of approximately 1,191 times the maximum recommended human dose. In rats, dapagliflozin was neither embryolethal nor teratogenic at exposures up to 1,441 times the maximum recommended human dose.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients:

Starch, Lactose, Microcrystalline Cellulose, Sodium Starch Glycolate, Povidone (K-30), Starch, Aerosil (Colloidal Silicon Dioxide), Croscarmellose Sodium, Talcum, Magnesium Stearate, Hydroxy Propyl Methyl Cellulose, Polyethylene Glycol-40 (PEG- 400), Titanium Dioxide, Colour: Iron oxide Yellow, Isopropyl Alcohol, Methylene Dichloride

6.2 Incompatibilities: NONE

6.3 Shelf life:

30 months from the date of manufacture.

6.4 Special precautions for storage:

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container: Pack of 3X10 Tablets

6.6 Special precautions for disposal and other handling:

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORIZATION HOLDER AND MANUFACTURING SITE ADDRESSES HAB PHAMACEUTICAL AND RESEARCH LTD

Address: Plot No.10, Pharmacity, SIDCUL, Selaqui, Dehradun, Uttarakhand-248 197. Phone: 0135-2698839/ 2698795 Email: doon@habpharma.in

Web: <u>http://habpharma.in</u>